A290598 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,2].
1, 4, 1, 28, 14, 1, 280, 210, 30, 1, 3640, 3640, 780, 52, 1, 58240, 72800, 20800, 2080, 80, 1, 1106560, 1659840, 592800, 79040, 4560, 114, 1, 24344320, 42602560, 18258240, 3043040, 234080, 8778, 154, 1, 608608000, 1217216000, 608608000, 121721600, 11704000, 585200, 15400, 200, 1, 17041024000, 38342304000, 21909888000, 5112307200, 589881600, 36867600, 1293600, 25200, 252, 1, 528271744000, 1320679360000, 849008160000, 226402176000, 30477216000, 2285791200, 100254000, 2604000, 39060, 310, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: 4 1 2: 28 14 1 3: 280 210 30 1 4: 3640 3640 780 52 1 5: 58240 72800 20800 2080 80 1 6: 1106560 1659840 592800 79040 4560 114 1 7: 24344320 42602560 18258240 3043040 234080 8778 154 1 8: 608608000 1217216000 608608000 121721600 11704000 585200 15400 200 1 ... n = 9: 17041024000 38342304000 21909888000 5112307200 589881600 36867600 1293600 25200 252 1, n = 10: 528271744000 1320679360000 849008160000 226402176000 30477216000 2285791200 100254000 2604000 39060 310 1. ... Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 3*4*T(3, 2) = 2*210 + 12*30 = 780. Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(4* 280 - 2*210 + (28/3)*30 - 70*1) = 3640. Four term recurrence: T(4, 2) = T(3, 1) + 2*11*T(3, 2) - 3*3*10*T(2, 2) = 210 + 22*30 - 90*1 = 780. Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(28 + 14*x + x^2) = (14 + 2*x) - 3*2 = 2*(4 + x). Sheffer recurrence for R(3, x): [(4 + x) + 6*(2 + x)*D_x + 9*x*(D_x)^2] (28 + 14*x + x^2) = (4 + x)*(28 + 14*x + x^2) + 6*(2 + x)*(14 + 2*x) + 9*2*x= 280 + 210*x + 30*x^2 + x^3 = R(3, x). Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*(4 + 3*2)/2)*(1*30/3! + 3*1/2!) = 780.
References
- Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
Links
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
Crossrefs
Formula
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-4/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-4/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 1)*T(n-1, m) - 3*(n-1)*(3*n - 2)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(4 + x)*1 + 6*(2 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(4 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Comments