cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290598 Triangle read by rows. A generalization of unsigned Lah numbers, called L[3,2].

Original entry on oeis.org

1, 4, 1, 28, 14, 1, 280, 210, 30, 1, 3640, 3640, 780, 52, 1, 58240, 72800, 20800, 2080, 80, 1, 1106560, 1659840, 592800, 79040, 4560, 114, 1, 24344320, 42602560, 18258240, 3043040, 234080, 8778, 154, 1, 608608000, 1217216000, 608608000, 121721600, 11704000, 585200, 15400, 200, 1, 17041024000, 38342304000, 21909888000, 5112307200, 589881600, 36867600, 1293600, 25200, 252, 1, 528271744000, 1320679360000, 849008160000, 226402176000, 30477216000, 2285791200, 100254000, 2604000, 39060, 310, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[3,2], the Sheffer triangle ((1 - 3*t)^(-4/3), t/(1 - 3*t)). It is defined as transition matrix risefac[3,2](x, n) = Sum_{m=0..n} L[3,2](n, m)*fallfac[3,2](x, m), where risefac[3,2](x, n):= Product_{0..n-1} (x + (2 + 3*j)) for n >= 1 and risefac[3,2](x, 0) := 1, and fallfac[3,2](x, n):= Product_{0..n-1} (x - (2 + 3*j)) for n >= 1 and fallfac[3,2](x, 0) := 1.
In matrix notation: L[3,2] = S1phat[3,2]*S2hat[3,2] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225470 and A225468, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s 1 + 3*t and (1 + 3*t)*(1 - (1 + 3*t)^(-4/3))/t, respectively. That is, a = {1, 3, repeat(0)} and z(n) = A290603(n)/A038500(n+1). See a W. Lang link under A006232 for these types of sequences with a reference, and also the present link, eq. (142).
The inverse matrix T^(-1) = L^(-1)[3,2] is Sheffer ((1 + 3*t)^(-4/3), t/(1 + 3*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[3,2](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[3,2](x, m), n >= 0.

Examples

			The triangle T(n, m) begins:
n\m          0          1         2         3        4      5     6   7 8  ...
0:           1
1:           4          1
2:          28         14         1
3:         280        210        30         1
4:        3640       3640       780        52        1
5:       58240      72800     20800      2080       80      1
6:     1106560    1659840    592800     79040     4560    114     1
7:    24344320   42602560  18258240   3043040   234080   8778   154   1
8:   608608000 1217216000 608608000 121721600 11704000 585200 15400 200 1
...
n = 9: 17041024000 38342304000 21909888000 5112307200 589881600 36867600 1293600 25200 252 1,
n = 10: 528271744000 1320679360000 849008160000 226402176000 30477216000 2285791200 100254000 2604000 39060 310 1.
...
Recurrence from a-sequence:  T(4, 2) = (4/2)*T(3, 1) + 3*4*T(3, 2) = 2*210 + 12*30 = 780.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2) + z(3)*T(3, 3)) = 4*(4* 280  - 2*210 + (28/3)*30 - 70*1) = 3640.
Four term recurrence: T(4, 2) = T(3, 1) + 2*11*T(3, 2) - 3*3*10*T(2, 2) =  210 + 22*30  - 90*1 = 780.
Meixner type identity for n = 2: (D_x - 3*(D_x)^2)*(28 + 14*x + x^2) = (14 + 2*x) - 3*2 = 2*(4 + x).
Sheffer recurrence for R(3, x): [(4 + x) + 6*(2 + x)*D_x + 9*x*(D_x)^2] (28 + 14*x + x^2) = (4 + x)*(28 + 14*x + x^2) + 6*(2 + x)*(14 + 2*x) + 9*2*x= 280 + 210*x + 30*x^2 + x^3 =  R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*(4 + 3*2)/2)*(1*30/3! + 3*1/2!) = 780.
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A007559(n+1) (column m=0), A225468, A225470, A271703 L[1,0], A286724 L[2,1], A290596, L[3,1], A290603.

Formula

T(n, m) = L[3,2](n,m) = Sum_{k=m..n} A225470(n, k) * A225468(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 3*t)^(-4/3)*exp(x*t/(1 - 3*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 3*t)^(-4/3)*(t/(1 - 3*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 3*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), from the a-sequence {1, 3 repeat(0)} and the z-sequence given above.
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(3*n - 1)*T(n-1, m) - 3*(n-1)*(3*n - 2)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 3*D_x)) * R(n, x) = n*R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-3)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(4 + x)*1 + 6*(2 + x)*D_x + 3^2*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(4 + 3*m)*Sum_{p=0..n-1-m} 3^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.