cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290602 Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).

This page as a plain text file.
%I A290602 #18 Dec 27 2017 09:49:35
%S A290602 1,2,1,1,1,1,1,1,1,4,2,1,1,4,2,2,1,1,2,1,1,3,3,2,1,1,6,6,4,2,1,2,1,4,
%T A290602 1,1,1,1,1,1,1,6,1,3,1,2,1,1,1,6,1,3,4,2,1,1,4,1,4,2,2,1,4,6,2,1,3,6,
%U A290602 2,1,3,10,5,10,10,2,1,1,5,5,10,5,2,2,1,1,2,1,1,1,2,2,1,1,2,2,1,1,1,1,1
%N A290602 Irregular triangle read by rows. T(n, k) gives the period length of the periodic sequence {A290600(n, k)^i}_{i >= A290601(n, k)} (mod A002808(n)), for n >= 1 and k = 1..A290599(n).
%C A290602 The length of row n is A290599(n).
%C A290602 See A290601 for the proof that this sequence is defined, and the definition of the type of periodicity (imin,P) with imin = A290601(n, k) and the period length P = T(n, k).
%e A290602 The irregular triangle T(n, k) begins (N(n) = A002808(n)):
%e A290602 n   N(n) \ k  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 ...
%e A290602 1   4         1
%e A290602 2   6         2  1  1
%e A290602 3   8         1  1  1
%e A290602 4   9         1  1
%e A290602 5   10        4  2  1  1  4
%e A290602 6   12        2  2  1  1  2  1  1
%e A290602 7   14        3  3  2  1  1  6  6
%e A290602 8   15        4  2  1  2  1  4
%e A290602 9   16        1  1  1  1  1  1  1
%e A290602 10  18        6  1  3  1  2  1  1  1  6  1  3
%e A290602 11  20        4  2  1  1  4  1  4  2  2  1  4
%e A290602 12  21        6  2  1  3  6  2  1  3
%e A290602 13  22       10  5 10 10  2  1  1  5  5 10  5
%e A290602 14  24        2  2  1  1  2  1  1  1  2  2  1  1  2  2  1
%e A290602 15  25        1  1  1  1
%e A290602 ...
%e A290602 T(5, 1) = 4 because A290600(5, 1) = 2, N(5) = A002808(5) = 10, A290601(5, 1) = 1 and {2^i}_{i>=1} (mod 10) == {repeat(2,4,8,6)} with period length 4. This is of the type (1,4).
%e A290602 T(7, 6) = 6 because A290600(7, 6) = 10, N(7) = A002808(7) = 14, A290601(7, 6) = 1 and {10^i}_{i>=1} (mod 14) == {repeat(10, 2, 6, 4, 12, 8)} with period length 4. Type (1,6).
%e A290602 The sequence {A290600(10, 1)^i}_{i >= A290601(10, 1)} (mod A002808(10)) = {2^i}_{i >= 1} (mod 18) is periodic with period length P = T(10, 1) = 6. Namely, {repeat(2, 4, 8, 16, 14, 10)}, of type (1,6).
%e A290602 The periodicity types (imin,P) = (A290601(n, k), A290602(n, k)) begin:
%e A290602 n   N(n) \ k    1     2      3      4     5     6     7     8     9      10    11
%e A290602 1   4         (2,1)
%e A290602 2   6         (1,2) (1,1)  (1,1)
%e A290602 3   8         (3,1) (2,1)  (3,1)
%e A290602 4   9         (2,1) (2,1)
%e A290602 5   10        (1,4) (1,2)  (1,1)  (1,1) (1,4)
%e A290602 6   12        (2,2) (1,2)  (1,1)  (2,1) (1,2) (1,1) (2,1)
%e A290602 7   14        (1,3) (1,3)  (1,2)  (1,1) (1,1) (1,6) (1,6)
%e A290602 8   15        (1,4) (1,2)  (1,1)  (1,2) (1,1) (1,4)
%e A290602 9   16        (4,1) (2,1)  (4,1)  (2,1) (4,1) (2,1) (4,1)
%e A290602 10  18        (1,6) (2,1)  (1,3)  (2,1) (1,2) (1,1) (1,1) (2,1) (1,6)  (2,1) (1,3)
%e A290602 11  20        (2,4) (1,2)  (1,1)  (2,1) (1,4) (2,1) (1,4) (2,2) (1,2)  (1,1) (2,4)
%e A290602 12  21        (1,6) (1,2)  (1,1)  (1,3) (1,6) (1,2) (1,1) (1,3)
%e A290602 13  22       (1,10) (1,5) (1,10) (1,10) (1,2) (1,1) (1,1) (1,5) (1,5) (1,10) (1,5)
%e A290602 ...
%e A290602 ----------------------------------------------------------------------------------
%Y A290602 Cf. A002808, A290599, A290600, A290601.
%K A290602 nonn,tabf
%O A290602 1,2
%A A290602 _Wolfdieter Lang_, Aug 30 2017