cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290655 Theta series of the 20-dimensional lattice of hyper-roots A_3(SU(3)).

Original entry on oeis.org

1, 0, 0, 240, 1782, 9072, 59328, 216432, 810000, 2059152, 6080832, 12349584, 31045596, 57036960, 122715648, 204193872, 418822650, 622067040, 1193611392, 1734272208, 3043596384, 4217152080, 7354100160, 9446435136, 15901091892, 20507712192, 32268036096, 40493364288, 64454759856
Offset: 0

Views

Author

Robert Coquereaux, Aug 08 2017

Keywords

Comments

This lattice is the k=3 member of the family of lattices of SU(3) hyper-roots associated with the fusion category A_k(SU(3)).
Simple objects of the latter are irreducible integrable representations of the affine Lie algebra of SU(3) at level k.
With k=3 there are r=(k+1)(k+2)/2=10 simple objects. The lattice is defined by 2 * r * (k+3)^2/3=240 hyper-roots of norm 6 which are also the vectors of shortest length. Minimal norm is 6. Det = 6^12.
The lattice is rescaled (q --> q^2): its theta function starts as 1 + 240*q^6 + 1782*q^8 +... See example.

Examples

			G.f. = 1 + 240*x^3 + 1782*x^4 + 9072*x^5 + ...
G.f. = 1 + 240*q^6 + 1782*q^8 + 9072*q^10 + ...
		

Crossrefs

Cf. A008434. {D_6}^{+} lattice is rescaled A_1(SU(3)).

Programs

  • Magma
    order:=60; // Example
    L:=LatticeWithGram(20,[6,0,0,0,2,0,2,2,2,0,0,2,0,2,1,-1,1,2,0,2,0,6,0,2,2,0,0,2,0,2,2,2,0,0,1,1,-1,0,2,2,0,0,\
    6,0,2,2,0,0,2,2,0,2,2,0,-1,1,1,2,2,0,0,2,0,6,0,0,0,0,0,2,-2,1,0,0,0,0,2,0,2,0,2,2,2,0,6,0,0,2,2,2,1,0,1,1,2,2,2,\
    2,2,2,0,0,2,0,0,6,0,0,2,0,0,1,-2,0,2,0,0,2,0,0,2,0,0,0,0,0,6,2,0,0,0,1,0,-2,0,2,0,0,0,2,2,2,0,0,2,0,2,6,0,0,2,0,\
    0,-2,2,0,-2,1,1,-1,2,0,2,0,2,2,0,0,6,0,0,0,-2,2,0,-2,2,-1,1,1,0,2,2,2,2,0,0,0,0,6,-2,0,2,0,-2,2,0,1,-1,1,0,2,0,-\
    2,1,0,0,2,0,-2,6,0,0,0,2,0,-2,0,2,0,2,2,2,1,0,1,1,0,0,0,0,6,0,0,0,0,0,2,2,2,0,0,2,0,1,-2,0,0,-2,2,0,0,6,0,-2,2,0\
    ,2,0,0,2,0,0,0,1,0,-2,-2,2,0,0,0,0,6,0,-2,2,0,0,2,1,1,-1,0,2,2,0,2,0,-2,2,0,-2,0,6,0,0,2,2,0,-1,1,1,0,2,0,2,0,-2\
    ,2,0,0,2,-2,0,6,0,2,0,2,1,-1,1,2,2,0,0,-2,2,0,-2,0,0,2,0,0,6,0,2,2,2,0,2,0,2,2,0,1,-1,1,0,2,2,0,2,2,0,6,0,0,0,2,\
    2,2,2,0,0,1,1,-1,2,2,0,0,2,0,2,0,6,0,2,2,0,0,2,0,2,-1,1,1,0,2,0,2,0,2,2,0,0,6]);
    theta:=ThetaSeriesModularForm(L); PowerSeries(theta,order);