cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290660 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290660 #13 Feb 16 2025 08:33:50
%S A290660 1,11,101,1111,11101,111111,1111101,11111111,111111101,1111111111,
%T A290660 11111111101,111111111111,1111111111101,11111111111111,
%U A290660 111111111111101,1111111111111111,11111111111111101,111111111111111111,1111111111111111101,11111111111111111111
%N A290660 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.
%C A290660 Initialized with a single black (ON) cell at stage zero.
%D A290660 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290660 Robert Price, <a href="/A290660/b290660.txt">Table of n, a(n) for n = 0..126</a>
%H A290660 Robert Price, <a href="/A290660/a290660.tmp.txt">Diagrams of first 20 stages</a>
%H A290660 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A290660 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290660 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290660 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290660 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290660 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290660 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290660 Conjectures from _Chai Wah Wu_, Aug 03 2020: (Start)
%F A290660 a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) for n > 3.
%F A290660 G.f.: (100*x^3 - 10*x^2 + x + 1)/((x - 1)*(x + 1)*(10*x - 1)). (End)
%t A290660 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290660 code = 899; stages = 128;
%t A290660 rule = IntegerDigits[code, 2, 10];
%t A290660 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290660 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290660 ca = a;
%t A290660 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290660 PrependTo[ca, a];
%t A290660 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290660 k = (Length[ca[[1]]] + 1)/2;
%t A290660 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290660 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290660 Cf. A166956, A290661, A290662.
%K A290660 nonn,easy
%O A290660 0,2
%A A290660 _Robert Price_, Aug 08 2017