cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290661 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290661 #13 Feb 16 2025 08:33:50
%S A290661 1,11,101,1111,10111,111111,1011111,11111111,101111111,1111111111,
%T A290661 10111111111,111111111111,1011111111111,11111111111111,
%U A290661 101111111111111,1111111111111111,10111111111111111,111111111111111111,1011111111111111111,11111111111111111111
%N A290661 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.
%C A290661 Initialized with a single black (ON) cell at stage zero.
%D A290661 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290661 Robert Price, <a href="/A290661/b290661.txt">Table of n, a(n) for n = 0..126</a>
%H A290661 Robert Price, <a href="/A290661/a290661.tmp.txt">Diagrams of first 20 stages</a>
%H A290661 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A290661 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290661 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290661 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290661 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290661 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290661 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290661 Conjectures from _Chai Wah Wu_, Aug 03 2020: (Start)
%F A290661 a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) for n > 3.
%F A290661 G.f.: (10*x^3 - 10*x^2 + 10*x + 1)/((x - 1)*(10*x - 1)*(10*x + 1)). (End)
%t A290661 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290661 code = 899; stages = 128;
%t A290661 rule = IntegerDigits[code, 2, 10];
%t A290661 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290661 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290661 ca = a;
%t A290661 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290661 PrependTo[ca, a];
%t A290661 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290661 k = (Length[ca[[1]]] + 1)/2;
%t A290661 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290661 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290661 Cf. A166956, A290660, A290662.
%K A290661 nonn,easy
%O A290661 0,2
%A A290661 _Robert Price_, Aug 08 2017