This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290661 #13 Feb 16 2025 08:33:50 %S A290661 1,11,101,1111,10111,111111,1011111,11111111,101111111,1111111111, %T A290661 10111111111,111111111111,1011111111111,11111111111111, %U A290661 101111111111111,1111111111111111,10111111111111111,111111111111111111,1011111111111111111,11111111111111111111 %N A290661 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood. %C A290661 Initialized with a single black (ON) cell at stage zero. %D A290661 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A290661 Robert Price, <a href="/A290661/b290661.txt">Table of n, a(n) for n = 0..126</a> %H A290661 Robert Price, <a href="/A290661/a290661.tmp.txt">Diagrams of first 20 stages</a> %H A290661 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015. %H A290661 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A290661 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A290661 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A290661 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A290661 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A290661 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A290661 Conjectures from _Chai Wah Wu_, Aug 03 2020: (Start) %F A290661 a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) for n > 3. %F A290661 G.f.: (10*x^3 - 10*x^2 + 10*x + 1)/((x - 1)*(10*x - 1)*(10*x + 1)). (End) %t A290661 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A290661 code = 899; stages = 128; %t A290661 rule = IntegerDigits[code, 2, 10]; %t A290661 g = 2 * stages + 1; (* Maximum size of grid *) %t A290661 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A290661 ca = a; %t A290661 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A290661 PrependTo[ca, a]; %t A290661 (* Trim full grid to reflect growth by one cell at each stage *) %t A290661 k = (Length[ca[[1]]] + 1)/2; %t A290661 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A290661 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}] %Y A290661 Cf. A166956, A290660, A290662. %K A290661 nonn,easy %O A290661 0,2 %A A290661 _Robert Price_, Aug 08 2017