cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290662 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290662 #14 Feb 16 2025 08:33:50
%S A290662 1,3,5,15,23,63,95,255,383,1023,1535,4095,6143,16383,24575,65535,
%T A290662 98303,262143,393215,1048575,1572863,4194303,6291455,16777215,
%U A290662 25165823,67108863,100663295,268435455,402653183,1073741823,1610612735,4294967295,6442450943
%N A290662 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood.
%C A290662 Initialized with a single black (ON) cell at stage zero.
%D A290662 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290662 Robert Price, <a href="/A290662/b290662.txt">Table of n, a(n) for n = 0..126</a>
%H A290662 Robert Price, <a href="/A290662/a290662.tmp.txt">Diagrams of first 20 stages</a>
%H A290662 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A290662 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290662 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290662 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290662 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290662 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290662 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290662 Conjectures from _Chai Wah Wu_, Aug 03 2020: (Start)
%F A290662 a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 3.
%F A290662 G.f.: (2*x^3 - 2*x^2 + 2*x + 1)/((x - 1)*(2*x - 1)*(2*x + 1)). (End)
%t A290662 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290662 code = 899; stages = 128;
%t A290662 rule = IntegerDigits[code, 2, 10];
%t A290662 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290662 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290662 ca = a;
%t A290662 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290662 PrependTo[ca, a];
%t A290662 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290662 k = (Length[ca[[1]]] + 1)/2;
%t A290662 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290662 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290662 Cf. A166956, A290660, A290661.
%K A290662 nonn,easy
%O A290662 0,2
%A A290662 _Robert Price_, Aug 08 2017