cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290694 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).

This page as a plain text file.
%I A290694 #28 Aug 26 2017 10:29:19
%S A290694 0,1,0,0,1,0,0,-1,2,0,0,1,-2,3,0,0,-1,14,-9,24,0,0,1,-10,75,-48,20,0,
%T A290694 0,-1,62,-135,312,-300,720,0,0,1,-42,903,-1680,2800,-2160,630,0,0,-1,
%U A290694 254,-1449,40824,-21000,27360,-17640,4480
%N A290694 Triangle read by rows, numerators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).
%C A290694 Consider a family of integrals I_m(n) = Integral_{x=0..1} P'(n, x)^m with P'(n,x) = Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!*x^k (see A278075 for the coefficients).
%C A290694 I_1(n) are the Bernoulli numbers A164555/A027642, I_2(n) are the Bernoulli median numbers A212196/A181131, I_3(n) are the numbers A291449/A291450.
%C A290694 The coefficients of the polynomials P_n(x)^m are for m = 1 A290694/A290695 and for m = 2 A291447/A291448.
%C A290694 Only omega(Clausen(n)) = A001221(A160014(n,1)) = A067513(n) coefficients are rational numbers if n is even. For odd n > 1 there are two rational coefficients.
%C A290694 Let C_k(n) = [x^k] P_n(x), k > 0 and n even. Conjecture: k is a prime factor of Clausen(n) <=> k = denominator(C_k(n)) <=> k does not divide Stirling2(n, k-1)*(k-1)!. (Note that by a comment in A019538 Stirling2(n, k-1)*(k-1)! is the number of chain topologies on an n-set having k open sets.)
%H A290694 Peter Luschny, <a href="/A290694/a290694.jpg">Illustrating A290694.</a>
%F A290694 T(n, k) = Numerator(Stirling2(n, k - 1)*(k - 1)!/k) if k > 0 else 0; for n >= 0 and 0 <= k <= n+1.
%e A290694 Triangle starts:
%e A290694 [0, 1]
%e A290694 [0, 0,  1]
%e A290694 [0, 0, -1,   2]
%e A290694 [0, 0,  1,  -2,    3]
%e A290694 [0, 0, -1,  14,   -9,  24]
%e A290694 [0, 0,  1, -10,   75, -48,   20]
%e A290694 [0, 0, -1,  62, -135, 312, -300, 720]
%e A290694 The first few polynomials are:
%e A290694 P_0(x) = x.
%e A290694 P_1(x) =  (1/2)*x^2.
%e A290694 P_2(x) = -(1/2)*x^2 + (2/3)*x^3.
%e A290694 P_3(x) =  (1/2)*x^2 - 2*x^3 + (3/2)*x^4.
%e A290694 P_4(x) = -(1/2)*x^2 + (14/3)*x^3 - 9*x^4 + (24/5)*x^5.
%e A290694 P_5(x) =  (1/2)*x^2 - 10*x^3 + (75/2)*x^4 - 48*x^5 + 20*x^6.
%e A290694 P_6(x) = -(1/2)*x^2 + (62/3)*x^3 - 135*x^4 + 312*x^5 - 300*x^6 + (720/7)*x^7.
%e A290694 Evaluated at x = 1 this gives an additive decomposition of the Bernoulli numbers:
%e A290694 B(0) =     1 =    1.
%e A290694 B(1) =   1/2 =  1/2.
%e A290694 B(2) =   1/6 = -1/2 +  2/3.
%e A290694 B(3) =     0 =  1/2 -    2 + 3/2.
%e A290694 B(4) = -1/30 = -1/2 + 14/3 -    9 + 24/5.
%e A290694 B(5) =     0 =  1/2 -   10 + 75/2 -   48 +  20.
%e A290694 B(6) =  1/42 = -1/2 + 62/3 -  135 +  312 - 300 + 720/7.
%p A290694 BG_row := proc(m, n, frac, val) local F, g, v;
%p A290694 F := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n):
%p A290694 g := x -> int(F(n,x)^m, x):
%p A290694 `if`(val = "val", subs(x=1, g(x)), [seq(coeff(g(x),x,j), j=0..m*n+1)]):
%p A290694 `if`(frac = "num", numer(%), denom(%)) end:
%p A290694 seq(BG_row(1, n, "num", "val"), n=0..16);         # A164555
%p A290694 seq(BG_row(1, n, "den", "val"), n=0..16);         # A027642
%p A290694 seq(print(BG_row(1, n, "num", "poly")), n=0..12); # A290694 (this seq.)
%p A290694 seq(print(BG_row(1, n, "den", "poly")), n=0..12); # A290695
%p A290694 # Alternatively:
%p A290694 T_row := n -> numer(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 6 do T_row(n) od;
%t A290694 T[n_, k_] := If[k > 0, Numerator[StirlingS2[n, k - 1]*(k - 1)! / k], 0]; Table[T[n, k], {n, 0, 8}, {k, 0, n+1}] // Flatten
%Y A290694 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
%Y A290694 Cf. A160014, A278075.
%K A290694 sign,tabf,frac
%O A290694 0,9
%A A290694 _Peter Luschny_, Aug 24 2017