cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290695 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).

This page as a plain text file.
%I A290695 #16 Jun 15 2019 10:31:56
%S A290695 1,1,1,1,2,1,1,2,3,1,1,2,1,2,1,1,2,3,1,5,1,1,2,1,2,1,1,1,1,2,3,1,1,1,
%T A290695 7,1,1,2,1,2,1,1,1,1,1,1,2,3,1,5,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,2,
%U A290695 3,1,1,1,1,1,1,1,11,1,1,2,1,2,1,1,1,1,1,1,1,1
%N A290695 Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).
%C A290695 See A290694 for comments.
%F A290695 T(n, k) = Denominator([x^k] Integral (Sum_{j=0..n} (-1)^(n-j)*Stirling2(n,j)*j!* x^j)^m) for m = 1 and k = 0..n+1.
%e A290695 Triangle starts:
%e A290695 [1, 1]
%e A290695 [1, 1, 2]
%e A290695 [1, 1, 2, 3]
%e A290695 [1, 1, 2, 1, 2]
%e A290695 [1, 1, 2, 3, 1, 5]
%e A290695 [1, 1, 2, 1, 2, 1, 1]
%e A290695 [1, 1, 2, 3, 1, 1, 1, 7]
%e A290695 [1, 1, 2, 1, 2, 1, 1, 1, 1]
%p A290695 T_row := n -> denom(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 7 do T_row(n) od;
%t A290695 T[n_] := Denominator[CoefficientList[Sum[(-1)^(n-j+1) StirlingS2[n, j-1] (j-1)! x^j/j, {j, 1, n+1}], x]];
%t A290695 Table[T[n], {n, 0, 7}] (* _Jean-François Alcover_, Jun 15 2019, from Maple *)
%Y A290695 Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
%K A290695 nonn,tabf,frac
%O A290695 0,5
%A A290695 _Peter Luschny_, Aug 24 2017