A290696 Triangle read by rows, T(n, k) = [x^k](Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!* x^k)^2, for 0 <= k <= 2n.
1, 0, 0, 1, 0, 0, 1, -4, 4, 0, 0, 1, -12, 48, -72, 36, 0, 0, 1, -28, 268, -1056, 1968, -1728, 576, 0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400, 0, 0, 1, -124, 4924, -70080, 488640, -1909440, 4466880, -6393600, 5486400, -2592000, 518400
Offset: 0
Examples
Triangle starts: [1] [0, 0, 1] [0, 0, 1, -4, 4] [0, 0, 1, -12, 48, -72, 36] [0, 0, 1, -28, 268, -1056, 1968, -1728, 576] [0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400] The first few polynomials: P_0(x) = 1 P_1(x) = x^2 P_2(x) = x^2 - 4*x^3 + 4*x^4 P_3(x) = x^2 - 12*x^3 + 48*x^4 - 72*x^5 + 36*x^6 P_4(x) = x^2 - 28*x^3 + 268*x^4 - 1056*x^5 + 1968*x^6 - 1728*x^7 + 576*x^8
Programs
-
Maple
P := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n)^2; for n from 0 to 6 do seq(coeff(P(n, x), x, k), k=0..2*n) od;
Comments