This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290697 #16 Aug 09 2017 20:18:01 %S A290697 2,2,3,4,5,7,9,12,16,21,28,37,49,67,91 %N A290697 Size of largest triangle occurring in any of the possible dissections of an equilateral triangle into n equilateral triangles with integer sides, assuming gcd(s_1,s_2,...,s_n)=1, s_k being the side lengths. %C A290697 a(4)=1. A dissection into 5 triangles is impossible. %C A290697 The size of the smallest triangle is 1 for triangles with maximum ratio of sizes between largest and smallest triangle for all n <= 20. If dissections with maximum size of largest occurring triangle and size of smallest triangle > 1 are found for larger n, there might be different configurations leading to a maximum ratio between largest and smallest side having a shorter largest side than the one provided as a(n). If this situation occurs for any n > 20, it shall be indicated in a corresponding comment. %H A290697 Ales Drapal, Carlo Hamalainen, <a href="https://arxiv.org/abs/0910.5199">An enumeration of equilateral triangle dissections</a>, arXiv:0910.5199 [math.CO], 2009-2010. %e A290697 a(11)=7: %e A290697 * %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 / 7 \ %e A290697 / \ %e A290697 / \ %e A290697 / \ %e A290697 *-----------*---------------* %e A290697 / \ / \ / \ %e A290697 / \ 3 / \ / \ %e A290697 / 2 \ / \ 4 / \ %e A290697 *-------* / \ / \ %e A290697 / \ 2 / \ / 4 \ / 4 \ %e A290697 / \ *---* \ / \ %e A290697 / 2 \ / \ / \ / \ %e A290697 *-------*---*---------------*---------------* %e A290697 More illustrations are provided on pages 17-19 of the Drapal and Hamalainen article. %Y A290697 Cf. A167123, A290653. %K A290697 nonn,hard,more %O A290697 6,1 %A A290697 _Hugo Pfoertner_, Aug 09 2017