cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290730 Analog of A084848, replacing "quadratic residue" (X^2) with "value of X(3X-1)/2". a(n) = A290732(A290729(n)).

This page as a plain text file.
%I A290730 #30 Feb 27 2020 23:10:18
%S A290730 1,3,4,6,7,9,10,12,11,12,18,21,24,28,36,40,42,44,66,77,72,84,108,120,
%T A290730 126,162,168,216,240,252,280,264,308,396,440,462,594,504,648,720,756,
%U A290730 840,1008,1080,1134,1260,1512,1512,1680,2016
%N A290730 Analog of A084848, replacing "quadratic residue" (X^2) with "value of X(3X-1)/2". a(n) = A290732(A290729(n)).
%H A290730 Hugo Pfoertner, <a href="/A290730/b290730.txt">Table of n, a(n) for n = 1..182</a>
%H A290730 Andreas Enge, William Hart, Fredrik Johansson, <a href="http://arxiv.org/abs/1608.06810">Short addition sequences for theta functions</a>, arXiv:1608.06810 [math.NT], 2016-2018. See Table 6.
%t A290730 a290732[n_] := Product[{p, e} = pe; If[p <= 3, p^e, (p^e - p^(e-1))/2 + (p^(e-1) - p^(Mod[e+1, 2]))/(2*(p+1))+1], {pe, FactorInteger[n]}];
%t A290730 r = 2; Reap[For[j = 1, j <= 24001, j = j+1, w = a290732[j]; t = w/j; If[t < r, r = t; Sow[w]]]][[2, 1]] (* _Jean-François Alcover_, Oct 03 2018, after _Hugo Pfoertner_ *)
%o A290730 (PARI) a290732(n)={my(f=factor(n));prod(k=1,#f~,my([p,e]=f[k, ]); if(p<=3,p^e,(p^e-p^(e-1))/2+(p^(e-1)-p^((e+1)%2))/(2*(p+1))+1))}
%o A290730 my(r=2);for(j=1,24001,my(w=a290732(j),t=w/j);if(t<r,r=t;print1(w,", "))) \\ _Hugo Pfoertner_, Aug 26 2018
%Y A290730 Cf. A000326, A085635, A084848, A290727, A290728, A290729, A290732.
%K A290730 nonn
%O A290730 1,2
%A A290730 _N. J. A. Sloane_, Aug 10 2017
%E A290730 More terms from _Hugo Pfoertner_, Aug 23 2018
%E A290730 a(1), a(19) and a(38) corrected by _Hugo Pfoertner_, Aug 26 2018