This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290732 #33 Nov 03 2018 19:45:34 %S A290732 1,2,3,4,3,6,4,8,9,6,6,12,7,8,9,16,9,18,10,12,12,12,12,24,11,14,27,16, %T A290732 15,18,16,32,18,18,12,36,19,20,21,24,21,24,22,24,27,24,24,48,22,22,27, %U A290732 28,27,54,18,32,30,30,30,36 %N A290732 Number of distinct values of X*(3*X-1)/2 mod n. %H A290732 Andrew Howroyd, <a href="/A290732/b290732.txt">Table of n, a(n) for n = 1..10000</a> %H A290732 Andreas Enge, William Hart, Fredrik Johansson, <a href="http://arxiv.org/abs/1608.06810">Short addition sequences for theta functions</a>, arXiv:1608.06810 [math.NT], (24-August-2016). See Table 6. %F A290732 a(3^n) = 3^n. - _Hugo Pfoertner_, Aug 25 2018 %F A290732 a(n) = A317623(n) * A040001(n). - _Andrew Howroyd_, Oct 27 2018 %F A290732 Multiplicative with a(2^e) = 2^e, a(3^e) = 3^e, a(p^e) = 1 + floor( p^(e+1)/(2*p+2) ) for prime p >= 5. - _Andrew Howroyd_, Nov 03 2018 %e A290732 The values taken by (3*X^2-X)/2 mod n for small n are: %e A290732 1, [0] %e A290732 2, [0, 1] %e A290732 3, [0, 1, 2] %e A290732 4, [0, 1, 2, 3] %e A290732 5, [0, 1, 2] %e A290732 6, [0, 1, 2, 3, 4, 5] %e A290732 7, [0, 1, 2, 5] %e A290732 8, [0, 1, 2, 3, 4, 5, 6, 7] %e A290732 9, [0, 1, 2, 3, 4, 5, 6, 7, 8] %e A290732 10, [0, 1, 2, 5, 6, 7] %e A290732 11, [0, 1, 2, 4, 5, 7] %e A290732 12, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] %e A290732 ... %p A290732 a:=[]; M:=80; %p A290732 for n from 1 to M do %p A290732 q1:={}; %p A290732 for i from 0 to 2*n-1 do q1:={op(q1), i*(3*i-1)/2 mod n}; od; %p A290732 s1:=sort(convert(q1,list)); %p A290732 a:=[op(a),nops(s1)]; %p A290732 od: %p A290732 a; %t A290732 a[n_] := Table[PolynomialMod[X(3X-1)/2, n], {X, 0, 2*n-1}]// Union // Length; %t A290732 Array[a, 60] (* _Jean-François Alcover_, Sep 01 2018 *) %o A290732 (PARI) a(n)={my(v=vector(n)); for(i=0, 2*n-1, v[i*(3*i-1)/2%n + 1]=1); vecsum(v)} \\ _Andrew Howroyd_, Oct 27 2018 %o A290732 (PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); if(p<=3, p^e, 1 + p^(e+1)\(2*p+2)))} \\ _Andrew Howroyd_, Nov 03 2018 %Y A290732 Cf. A000224 (analog for X^2), A014113, A290729, A290730, A290731, A317623. %K A290732 nonn,mult %O A290732 1,2 %A A290732 _N. J. A. Sloane_, Aug 10 2017 %E A290732 Even terms corrected by _Andrew Howroyd_, Nov 03 2018