A290733 Number of compact partitions of n where each partition is counted with a certain weight.
0, -1, 2, -1, 0, -3, 3, 2, 0, -3, 1, -2, -1, 0, 5, 3, -2, -4, 1, -2, 1, -3, -1, 4, 2, 1, 6, -3, -3, -6, 1, 2, -2, -1, 2, -4, 3, 4, 4, 3, 2, -8, -1, -2, -1, -4, 0, 4, -2, -1, 4, -3, 3, 0, 7, 1, 3, 2, -6, -6, -5, -4, 4, 2, -2
Offset: 0
Keywords
Links
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See Lemma 2.1.
Programs
-
Maple
M:=101; B:=proc(a,q,n) local j,t1; global M; t1:=1; for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od; t1; end; # c_0 t2:=add((-1)^m*q^m*B(-q,q,m-1)/(1+q^m), m=1..M): series(t2,q,M); seriestolist(%);
Formula
See Maple program for g.f.
Comments