A290734 Number of compact partitions of n containing a 1 where each partition is counted with a certain weight.
0, -1, 2, -2, 3, -6, 6, -4, 6, -9, 10, -8, 6, -12, 14, -6, 7, -16, 16, -8, 10, -18, 14, -8, 8, -17, 24, -10, 6, -24, 22, -4, 10, -22, 20, -16, 9, -20, 28, -6, 8, -32, 26, -8, 14, -28, 24, -8, 8, -25, 34, -18, 6, -36, 34, -2, 18, -28, 24, -24, 10, -28, 40, -4, 7, -42, 38, -12, 18, -40, 26, -12, 12, -28
Offset: 0
Keywords
Links
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See Lemma 2.2.
Programs
-
Maple
M:=101; B:=proc(a,q,n) local j,t1; global M; t1:=1; for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od; t1; end; # c_1 T1:=add( (-1)^m*q^(m*(m+1)/2)/(B(-q,q,m)*(1+q^m)), m=1..M): series(T1,q,M); c1seq:=seriestolist(%);
Formula
See Maple program for g.f.
Comments