cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290736 Number of partitions of 2n+1 into odd parts in which the largest part appears an odd number of times and all other parts appear twice.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 7, 8, 7, 10, 12, 12, 15, 16, 17, 21, 24, 25, 28, 33, 35, 41, 45, 46, 56, 61, 65, 74, 80, 88, 99, 110, 116, 128, 143, 153, 170, 186, 200, 221, 241, 259, 285, 308, 332, 366, 396, 426, 462, 502, 539, 587, 636, 678, 738, 796, 856, 925, 993
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2017

Keywords

Examples

			For example, the relevant partitions of 7 are 7, 5+1+1, and 1+1+1+1+1+1+1.
		

Crossrefs

Programs

  • Maple
    M:=101;
    B:=proc(a,q,n) local j,t1; global M; t1:=1;
    for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od;
    t1; end;
    D34:=add( q^(2*m+1)*B(-q^2,q^4,m)/(1-q^(4*m+2)), m=0..M):series(D34,q,M); d34seq:=seriestolist(%); BISECT(%,1);
  • Mathematica
    M = 121;
    B[a_, q_, n_] := Module[{j, t1 = 1}, For[j = 0, j <= M, j++, t1 = t1(1 - a q^j)/(1 - a q^(n+j))]; t1];
    seq = Sum[q^(2m+1) B[-q^2, q^4, m]/(1 - q^(4m+2)), {m, 0, M}] + O[q]^M // CoefficientList[#, q]& // Partition[#, 2]& // #[[All, 2]]& (* Jean-François Alcover, Dec 16 2020, after Maple *)

Formula

See Maple code for g.f.
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2) * sqrt(n)). - Vaclav Kotesovec, May 24 2018