A290736 Number of partitions of 2n+1 into odd parts in which the largest part appears an odd number of times and all other parts appear twice.
1, 2, 3, 3, 4, 5, 5, 7, 8, 7, 10, 12, 12, 15, 16, 17, 21, 24, 25, 28, 33, 35, 41, 45, 46, 56, 61, 65, 74, 80, 88, 99, 110, 116, 128, 143, 153, 170, 186, 200, 221, 241, 259, 285, 308, 332, 366, 396, 426, 462, 502, 539, 587, 636, 678, 738, 796, 856, 925, 993
Offset: 0
Keywords
Examples
For example, the relevant partitions of 7 are 7, 5+1+1, and 1+1+1+1+1+1+1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See (3.4).
Programs
-
Maple
M:=101; B:=proc(a,q,n) local j,t1; global M; t1:=1; for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od; t1; end; D34:=add( q^(2*m+1)*B(-q^2,q^4,m)/(1-q^(4*m+2)), m=0..M):series(D34,q,M); d34seq:=seriestolist(%); BISECT(%,1);
-
Mathematica
M = 121; B[a_, q_, n_] := Module[{j, t1 = 1}, For[j = 0, j <= M, j++, t1 = t1(1 - a q^j)/(1 - a q^(n+j))]; t1]; seq = Sum[q^(2m+1) B[-q^2, q^4, m]/(1 - q^(4m+2)), {m, 0, M}] + O[q]^M // CoefficientList[#, q]& // Partition[#, 2]& // #[[All, 2]]& (* Jean-François Alcover, Dec 16 2020, after Maple *)
Formula
See Maple code for g.f.
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2) * sqrt(n)). - Vaclav Kotesovec, May 24 2018