A290737 Weighted count of partitions of 2n+1 into odd parts in which the largest part appears an odd number of times and all other parts appear twice, with respect to a certain weight.
1, 2, 1, 1, 2, -1, 1, 3, -2, 1, 2, 0, 2, 1, 0, -1, 5, 2, -1, 2, -3, 5, 3, -1, 2, 0, 1, 1, 2, -2, 2, 5, 2, -4, 0, 1, -1, 6, 0, 4, -3, -1, 3, -1, 2, 0, 4, -2, 2, 4, -2, 1, 5, -2, -2, -2, 4, 6, 1, 3, -2, 4, -3, -1, -2, 4, 6, 2, 0, -4, 5, 1, 3, -1, 0, 0, 4, -1, -2, 4, -2, 2, 5, 2, 5, -5, -2, 6, -4, 0, -3
Offset: 0
Keywords
Links
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016. See Lemma 3.3.
Programs
-
Maple
M:=201; B:=proc(a, q, n) local j, t1; global M; t1:=1; for j from 0 to M do t1:=t1*(1-a*q^j)/(1-a*q^(n+j)); od; t1; end; D2:=add( q^(2*m+1)*B(q^2,q^4,m)/(1-q^(4*m+2)), m=0..M): series(D2,q,M); d2seq:=seriestolist(%); BISECT(%,1);
Formula
See Maple code for g.f.
Comments