cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290738 a(n) is the number of fixed polycubes of size n that are proper in n-5 dimensions.

This page as a plain text file.
%I A290738 #45 Jan 05 2021 14:48:05
%S A290738 0,1,758,154741,20762073,2323972976,240154383596,24109617950208,
%T A290738 2417940914461280,246158020396388352,25680108955640400000,
%U A290738 2760762217507260989440,306854769192894226859776,35326258772832011339956224,4216066596599500902861091840,521775392548443914240000000000
%N A290738 a(n) is the number of fixed polycubes of size n that are proper in n-5 dimensions.
%C A290738 Denoted DX(n,n-5).
%H A290738 G. Barequet and M. Shalah, <a href="https://doi.org/10.1016/j.ejc.2017.03.006">Counting n-cell polycubes proper in n-k dimensions</a>, European Journal of Combinatorics, 63(2017), 146-163.
%H A290738 G. Barequet and M. Shalah, <a href="https://doi.org/10.1016/j.endm.2015.06.022">Automatic Proofs for Formulae Enumerating Proper Polycubes</a>, In Proceedings of the 8th European Conference on Combinatorics, Graph Theory and Applications, 49(2015), 145-151, 2015.
%H A290738 G. Barequet and M. Shalah, <a href="http://drops.dagstuhl.de/opus/volltexte/2015/5088/pdf/5.pdf">Automatic Proofs for Formulae Enumerating Proper Polycubes</a>, In Video Review at the 31st Symposium on Computational Geometry, 19-22, 2015.
%H A290738 M. Shalah, <a href="https://youtu.be/ojNDm8qKr9A">Automatic Proofs for Formulae Enumerating Proper Polycubes</a>, Youtube, 2015.
%F A290738 a(n) = 2^(n-12)*n^(n-11)*(n-5)*(240*n^11 - 6000*n^10 + 62240*n^9 - 356232*n^8 + 1335320*n^7 - 4062240*n^6 + 12397445*n^5 - 42322743*n^4 + 150403080*n^3 - 535510740*n^2 + 1923269040*n - 3731495040)/45. (proved)
%Y A290738 A259015 gives the number of n-cell polycubes that are proper in n-4 dimensions.
%Y A290738 Diagonal 5 of A195739.
%K A290738 nonn
%O A290738 5,3
%A A290738 _Mira Shalah_, Aug 12 2017