cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290744 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 5.

This page as a plain text file.
%I A290744 #19 Jun 04 2021 02:37:05
%S A290744 5,6,8,11,15,19,24,30,37,45,53,62,72,83,95,107,120,134,149,165,181,
%T A290744 198,216,235,255,275,296,318,341,365,389,414,440,467,495,523,552,582,
%U A290744 613,645,677,710,744,779,815,851,888,926,965,1005,1045,1086,1128,1171,1215
%N A290744 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 5.
%H A290744 Amy Glen, Jamie Simpson, and W. F. Smyth, <a href="https://doi.org/10.37236/6915">Counting Lyndon Factors</a>, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
%H A290744 Ryo Hirakawa, Yuto Nakashima, Shunsuke Inenaga, and Masayuki Takeda, <a href="https://arxiv.org/abs/2106.01190">Counting Lyndon Subsequences</a>, arXiv:2106.01190 [math.CO], 2021. See MDF(n, s).
%F A290744 a(n) = binomial(n+1,2) - (s-p)*binomial(m+1,2) - p*binomial(m+2,2) + s where s=5, m=floor(n/s), p=n-m*s. - _Andrew Howroyd_, Aug 14 2017
%F A290744 Conjectures from _Colin Barker_, Oct 03 2017: (Start)
%F A290744 G.f.: x*(5 - 4*x + x^2 + x^3 + x^4 - 5*x^5 + 5*x^6) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
%F A290744 a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n>6.
%F A290744 (End)
%o A290744 (PARI) a(n)=(s->my(m=n\s, p=n%s); binomial(n+1, 2)-(s-p)*binomial(m+1, 2)-p*binomial(m+2, 2)+s)(5); \\ _Andrew Howroyd_, Aug 14 2017
%Y A290744 Cf. A290743, A290745, A290747.
%K A290744 nonn
%O A290744 1,1
%A A290744 _N. J. A. Sloane_, Aug 11 2017
%E A290744 a(11)-a(55) from _Andrew Howroyd_, Aug 14 2017