cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290745 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 10.

This page as a plain text file.
%I A290745 #23 Sep 08 2022 08:46:19
%S A290745 10,11,13,16,20,25,31,38,46,55,64,74,85,97,110,124,139,155,172,190,
%T A290745 208,227,247,268,290,313,337,362,388,415,442,470,499,529,560,592,625,
%U A290745 659,694,730,766,803,841,880,920,961,1003,1046,1090,1135
%N A290745 Maximum number of distinct Lyndon factors that can appear in words of length n over an alphabet of size 10.
%H A290745 Vincenzo Librandi, <a href="/A290745/b290745.txt">Table of n, a(n) for n = 1..1000</a>
%H A290745 Amy Glen, Jamie Simpson, and W. F. Smyth, <a href="https://doi.org/10.37236/6915">Counting Lyndon Factors</a>, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
%H A290745 Ryo Hirakawa, Yuto Nakashima, Shunsuke Inenaga, and Masayuki Takeda, <a href="https://arxiv.org/abs/2106.01190">Counting Lyndon Subsequences</a>, arXiv:2106.01190 [math.CO], 2021. See MDF(n, s).
%F A290745 a(n) = binomial(n+1,2) - (s-p)*binomial(m+1,2) - p*binomial(m+2,2) + s where s=10, m=floor(n/s), p=n-m*s. - _Andrew Howroyd_, Aug 14 2017
%F A290745 G.f.: x*(10 - 9*x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 - 10*x^10 + 10*x^11) / ((1 - x)^3*(1 + x)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - _Colin Barker_, Oct 03 2017
%t A290745 Table[(Binomial[n+1, 2] - (10 - (n-10 Floor[n/10])) Binomial[Floor[n/10]+1, 2]- (n-10 Floor[n/10]) Binomial[Floor[n/10]+2, 2]+10), {n, 60}] (* _Vincenzo Librandi_, Oct 04 2017 *)
%o A290745 (PARI) a(n)=(s->my(m=n\s, p=n%s); binomial(n+1, 2)-(s-p)*binomial(m+1, 2)-p*binomial(m+2, 2)+s)(10); \\ _Andrew Howroyd_, Aug 14 2017
%o A290745 (Magma) [Binomial(n+1,2)-(10-(n-10*Floor(n/10)))*Binomial(Floor(n/10)+1,2)-(n-10*Floor(n/10))*Binomial(Floor(n/10)+2,2)+ 10: n in [1..50]]; // _Vincenzo Librandi_, Oct 04 2017
%Y A290745 Cf. A290743, A290744.
%K A290745 nonn
%O A290745 1,1
%A A290745 _N. J. A. Sloane_, Aug 11 2017
%E A290745 a(11)-a(50) from _Andrew Howroyd_, Aug 14 2017