A290746 Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 2.
2, 9, 30, 87, 234, 597, 1470, 3522, 8264, 19067, 43398, 97659, 217674, 481221, 1056370, 2304676, 5000934, 10799564, 23222114, 49742577, 106181710, 225947089, 479426238, 1014615466, 2142099088, 4512515283, 9486635788, 19906068415, 41696243298, 87196489799
Offset: 1
Keywords
Links
- Lars Blomberg, Table of n, a(n) for n = 1..100
- Amy Glen, Jamie Simpson, W. F. Smyth, Counting Lyndon Factors, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
Programs
-
PARI
Inner(m,s)=d=divisors(m);sum(i=1,length(d),moebius(m/d[i])*s^d[i]); Lyndon(s,n) = sum(m=1,n, (n-m+1)/m * s^(n-m) * Inner(m,s)); vector(100,i,Lyndon(2,i)) \\ Lars Blomberg, Aug 12 2017
Extensions
a(11)-a(33) from Lars Blomberg, Aug 12 2017