This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290750 #18 Oct 09 2019 03:12:42 %S A290750 3,7,24,76,272,948,3496,12920,48792,185912,716472,2781600,10878640, %T A290750 42789292,169181280,671865840,2678679360,10716650484,43007271768, %U A290750 173072547360,698235684336,2823329204964,11439823954664,46440709197120,188856966713360,769241291697640,3137871076653336,12817512478814400 %N A290750 Inverse Euler transform of [3, 13, 55, 233, 987, 4181, 17711, 75025, 317811, ...], Fibonacci(3*k+1). %H A290750 Alois P. Heinz, <a href="/A290750/b290750.txt">Table of n, a(n) for n = 1..1000</a> %H A290750 Latham Boyle, Paul J. Steinhardt, <a href="https://arxiv.org/abs/1608.08220">Self-Similar One-Dimensional Quasilattices</a>, arXiv preprint arXiv:1608.08220 [math-ph], 2016. See Table 2, column 8. %H A290750 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A290750 a(n) ~ (2 + sqrt(5))^n / n. - _Vaclav Kotesovec_, Oct 09 2019 %p A290750 read(transforms): with(combinat); F:=fibonacci; %p A290750 s1:=[seq(F(3*n+1),n=1..40)]; %p A290750 EULERi(s1); %t A290750 mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0]; %t A290750 EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i b[[i]] - Sum[c[[d]] b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d] c[[d]], {d, 1, i}]]]; Return[a]]; %t A290750 EULERi[Table[Fibonacci[3k + 1], {k, 1, 30}]] (* _Jean-François Alcover_, Aug 06 2018 *) %Y A290750 Cf. A033887. %K A290750 nonn %O A290750 1,1 %A A290750 _N. J. A. Sloane_, Aug 12 2017