This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290760 #14 Oct 20 2017 15:40:40 %S A290760 1,2,6,30,78,330,390,870,1410,3198,3390,4290,7878,9570,10230,11310, %T A290760 13026,15510,15990,18330,26070,30966,37290,39390,40890,44070,45210, %U A290760 65130,84810,94830,98310,104610,122070,124410,132990,154830,159330,175890,198330,201630 %N A290760 Matula-Goebel numbers of transitive rooted identity trees (or transitive finitary sets). %C A290760 A rooted tree is transitive if every terminal subtree is a branch of the root. A finitary set is transitive if every element is also a subset. %e A290760 Let o = {}. The sequence of transitive finitary sets begins: %e A290760 1 o %e A290760 2 {o} %e A290760 6 {o,{o}} %e A290760 30 {o,{o},{{o}}} %e A290760 78 {o,{o},{o,{o}}} %e A290760 330 {o,{o},{{o}},{{{o}}}} %e A290760 390 {o,{o},{{o}},{o,{o}}} %e A290760 870 {o,{o},{{o}},{o,{{o}}}} %e A290760 1410 {o,{o},{{o}},{{o},{{o}}}} %e A290760 3198 {o,{o},{o,{o}},{{o,{o}}}} %e A290760 3390 {o,{o},{{o}},{o,{o},{{o}}}} %e A290760 4290 {o,{o},{{o}},{{{o}}},{o,{o}}} %e A290760 7878 {o,{o},{o,{o}},{o,{o,{o}}}} %e A290760 9570 {o,{o},{{o}},{{{o}}},{o,{{o}}}} %e A290760 10230 {o,{o},{{o}},{{{o}}},{{{{o}}}}} %e A290760 11310 {o,{o},{{o}},{o,{o}},{o,{{o}}}} %e A290760 13026 {o,{o},{o,{o}},{{o},{o,{o}}}} %e A290760 15510 {o,{o},{{o}},{{{o}}},{{o},{{o}}}} %e A290760 15990 {o,{o},{{o}},{o,{o}},{{o,{o}}}} %e A290760 18330 {o,{o},{{o}},{o,{o}},{{o},{{o}}}} %t A290760 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A290760 finitaryQ[n_]:=finitaryQ[n]=Or[n===1,With[{m=primeMS[n]},{UnsameQ@@m,finitaryQ/@m}]/.List->And]; %t A290760 subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]]; %t A290760 transitaryQ[n_]:=Divisible[n,Times@@subprimes[n]]; %t A290760 nn=100000;Fold[Select,Range[nn],{finitaryQ,transitaryQ}] %Y A290760 Cf. A000081, A001192, A004111, A007097, A076146, A276625, A279861, A290689, A290822. %K A290760 nonn %O A290760 1,2 %A A290760 _Gus Wiseman_, Oct 19 2017