This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290772 #27 Feb 01 2022 08:25:46 %S A290772 1,2,24,12,2640,7536,9408,2688,208445760,1082368560,4312566720, %T A290772 12473296800,24050669760,27034640640,13900259520,1813091520 %N A290772 Number of cyclic Gray codes of length 2n which include all-0 bit sequence and use the least possible number of bits. %C A290772 From _Andrey Zabolotskiy_, Aug 23 2017: (Start) %C A290772 The smallest number of bits needed is ceiling(log_2(n)). For larger number of bits, more Gray codes exist. Cyclic Gray codes of odd lengths do not exist, hence only even lengths are considered. %C A290772 A003042 is a subsequence: A003042(n+1) = a(2^n). %C A290772 a(n) is also the number of self-avoiding directed cycles of length 2n on a cube of the least possible dimension starting from the origin. %C A290772 (End) %H A290772 Thomas König, <a href="/A290772/a290772.f90.txt">Fortran program for counting</a> %e A290772 Let n=3, so we count codes of length 6. Then at least 3 bits are needed to have such a code. There are a(3)=24 3-bit cyclic Gray codes of length 6: %e A290772 000, 001, 011, 010, 110, 100 %e A290772 000, 001, 011, 111, 110, 100 %e A290772 000, 001, 011, 111, 110, 010 %e A290772 000, 001, 011, 111, 101, 100 %e A290772 000, 001, 101, 100, 110, 010 %e A290772 000, 001, 101, 111, 110, 100 %e A290772 000, 001, 101, 111, 110, 010 %e A290772 000, 001, 101, 111, 011, 010 %e A290772 000, 010, 011, 001, 101, 100 %e A290772 000, 010, 011, 111, 110, 100 %e A290772 000, 010, 011, 111, 101, 100 %e A290772 000, 010, 011, 111, 101, 001 %e A290772 000, 010, 110, 111, 101, 100 %e A290772 000, 010, 110, 111, 101, 001 %e A290772 000, 010, 110, 111, 011, 001 %e A290772 000, 010, 110, 100, 101, 001 %e A290772 000, 100, 101, 111, 110, 010 %e A290772 000, 100, 101, 111, 011, 010 %e A290772 000, 100, 101, 111, 011, 001 %e A290772 000, 100, 101, 001, 011, 010 %e A290772 000, 100, 110, 111, 101, 001 %e A290772 000, 100, 110, 111, 011, 010 %e A290772 000, 100, 110, 111, 011, 001 %e A290772 000, 100, 110, 010, 011, 001 %o A290772 (Python) %o A290772 from math import log2, ceil %o A290772 def cyclic_gray(nb, n, a): %o A290772 if len(a) == n: %o A290772 if bin(a[-1]).count('1') == 1: %o A290772 return 1 %o A290772 return 0 %o A290772 r = 0 %o A290772 for i in range(nb): %o A290772 x = a[-1] ^ (1<<i) %o A290772 if x not in a: %o A290772 r += cyclic_gray(nb, n, a+[x]) %o A290772 return r %o A290772 print([cyclic_gray(ceil(log2(n))+1, n*2, [0]) for n in range(1, 9)]) %o A290772 # _Andrey Zabolotskiy_, Aug 23 2017 %Y A290772 Cf. A003042, A286899, A350784. %K A290772 nonn,hard,more %O A290772 1,2 %A A290772 _Ashis Kumar Mal_, Aug 10 2017 %E A290772 a(7)-a(8) and name from _Andrey Zabolotskiy_, Aug 23 2017 %E A290772 a(9)-a(13) from _Ashis Kumar Mal_, Sep 02 2017 %E A290772 a(14)-a(16) from _Thomas König_, Jan 22 2022