This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290775 #9 Feb 16 2025 08:33:50 %S A290775 0,0,2,24,138,532,1596,4032,8988,18216,34254,60632,102102,164892, %T A290775 256984,388416,571608,821712,1156986,1599192,2174018,2911524,3846612, %U A290775 5019520,6476340,8269560,10458630,13110552,16300494,20112428,24639792,29986176,36266032,43605408,52142706 %N A290775 Number of 5-cycles in the n-triangular honeycomb bishop graph. %H A290775 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a> %H A290775 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A290775 a(n) = 2/5 * binomial(n + 1, 4)*(8 - 7*n + 2*n^2). %F A290775 a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). %F A290775 G.f.: -((2 x (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7). %t A290775 Table[2/5 Binomial[n + 1, 4] (8 - 7 n + 2 n^2), {n, 20}] %t A290775 LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 2, 24, 138, 532, 1596}, 20] %t A290775 CoefficientList[Series[-((2 (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7), {x, 0, 20}], x] %o A290775 (PARI) a(n)=n*(2*n^5 - 11*n^4 + 20*n^3 - 5*n^2 - 22*n + 16)/60 \\ _Charles R Greathouse IV_, Aug 10 2017 %Y A290775 Cf. A034827 (3-cycles in the triangular honeycomb bishop graph), A051843 (4-cycles), A290779 (6-cycles). %K A290775 nonn,easy %O A290775 1,3 %A A290775 _Eric W. Weisstein_, Aug 10 2017