A290791 a(n) is the smallest integer k > n such that (k+1)(k+2)...(2k-2n+1)/(k(k-1)...(k-n+1)) is an integer.
6, 9, 16, 27, 28, 95, 96, 121, 122, 123, 124, 125, 126, 537, 538, 539, 540, 905, 906, 1149, 1150, 1349, 1350, 1351, 1352, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 9585, 9586, 15719, 15720, 15721, 15722, 15723, 15724, 15725, 15726, 19653, 19654, 19655
Offset: 1
Keywords
Examples
If n = 1, for k = 2, 3, 4, 5, the fraction is respectively equal to 3/2, (4*5)/3, (5*6*7)/4, (6*7*8*9)/5 but for k = 6, the quotient is (7*8*9*10*11)/6 = 9240 and so a(1) = 6.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..100
- Wojcich Komornicki, Problem 556, Crux Mathematicorum, page 49, Vol. 8, Feb. 82.
Programs
-
Mathematica
a[n_] := Block[{k = n+1}, While[! IntegerQ[(1 + 2*k - 2*n)! (k-n)! / (k!)^2], k++]; k]; Array[a, 30] (* Giovanni Resta, Aug 11 2017 *)
Extensions
a(6)-a(46) from Giovanni Resta, Aug 11 2017
Comments