cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272798 Carmichael numbers k such that Euler totient function of k (phi(k)) is a perfect square.

Original entry on oeis.org

1729, 63973, 75361, 172081, 278545, 340561, 658801, 997633, 1773289, 3224065, 5310721, 8719309, 8719921, 12945745, 13187665, 15888313, 17586361, 27402481, 29020321, 39353665, 40430401, 49333201, 67371265, 84417985, 120981601, 128697361, 129255841, 130032865, 151530401, 151813201, 158864833
Offset: 1

Views

Author

Altug Alkan, May 06 2016

Keywords

Comments

Subsequence of A262406.
If n is a Carmichael number, then phi(n) = Product_{primes p dividing n} (p-1).
So the question is: What are the Carmichael numbers n such that Product_{primes p dividing n} (p-1) is a square?
The number of prime divisors of terms of this sequence are 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 5, 5, 4, 4, 4, 4, 4, ...
1299963601 = 601*1201*1801 is the second term that has three prime divisors and it is a member of this sequence since 600*1200*1800 = 2^10*3^4*5^6 is a square.
This sequence is infinite. See links section for more details. - Altug Alkan, Jan 16 2017

Examples

			1729 is a term because A000010(1729) = 1729*(1-1/7)*(1-1/13)*(1-1/19) = 1296 = 36^2.
		

Crossrefs

Programs

  • PARI
    isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}
    lista(nn) = for(n=1, nn, if(isA002997(n) && issquare(eulerphi(n)), print1(n, ", ")));

Extensions

a(30) corrected by Amiram Eldar, Aug 11 2017

A292572 Lucas-Carmichael numbers whose Dedekind psi value is a cube.

Original entry on oeis.org

8855, 31535, 73535, 265895, 12676799, 30071327, 86450399, 561645839, 674628479, 741722399, 945066527, 1066699799, 1304305415, 2239506719, 2423951999, 2693338559, 3512071871, 4708417055, 4811496767, 8194093919, 9140299199, 9184665599, 9405512639, 11729537855
Offset: 1

Views

Author

Amiram Eldar, Sep 19 2017

Keywords

Examples

			psi(8855) = 24^3.
		

Crossrefs

Programs

  • Mathematica
    psi[n_] := If[n < 1, 0, n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]]; s = Import["b006972.txt","Data"][[All,-1]];Select[s, IntegerQ@Power[psi@#, 1/3] &]
Showing 1-2 of 2 results.