This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290818 #26 Feb 16 2025 08:33:50 %S A290818 2,3,3,4,11,4,5,24,24,5,6,47,94,47,6,7,88,272,272,88,7,8,163,774,1185, %T A290818 774,163,8,9,304,2230,4280,4280,2230,304,9,10,575,6542,15781,20106, %U A290818 15781,6542,575,10,11,1104,19452,60604,88512,88512,60604,19452,1104,11 %N A290818 Array read by antidiagonals: T(m,n) = number of irredundant sets in the lattice (rook) graph K_m X K_n. %H A290818 Andrew Howroyd, <a href="/A290818/b290818.txt">Table of n, a(n) for n = 1..1275</a> %H A290818 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IrredundantSet.html">Irredundant Set</a> %H A290818 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookGraph.html">Rook Graph</a> %F A290818 T(m,n) = A290632(m, n) + Sum_{k=0..m-1} Sum_{r=2*k..n-1} binomial(m,k) * binomial(n,r) * k! * A008299(r,k) * c(m-k,n-r) where c(m,n) = Sum_{i=0..m-1} binomial(n,i) * (n^i - n!*stirling2(i, n)). %e A290818 Array begins: %e A290818 =============================================================== %e A290818 m\n| 1 2 3 4 5 6 7 8 %e A290818 ---+----------------------------------------------------------- %e A290818 1 | 2 3 4 5 6 7 8 9 ... %e A290818 2 | 3 11 24 47 88 163 304 575 ... %e A290818 3 | 4 24 94 272 774 2230 6542 19452 ... %e A290818 4 | 5 47 272 1185 4280 15781 60604 240073 ... %e A290818 5 | 6 88 774 4280 20106 88512 400728 1879744 ... %e A290818 6 | 7 163 2230 15781 88512 453271 2326534 12363513 ... %e A290818 7 | 8 304 6542 60604 400728 2326534 13169346 76446456 ... %e A290818 8 | 9 575 19452 240073 1879744 12363513 76446456 476777153 ... %e A290818 ... %t A290818 s[n_, k_]:=Sum[(-1)^i*Binomial[n, i] StirlingS2[n - i, k - i], {i, 0, Min[n, k]}]; %t A290818 c[m_, n_, x_]:=Sum[Binomial[m, i] (n^i - n!*StirlingS2[i, n])*x^i, {i, 0, m - 1}]; %t A290818 p[m_, n_, x_]:=Sum[Sum[Binomial[m, k] Binomial[n, r]* k!*s[r, k]*x^r*c[m - k, n - r, x], {r, 2k, n - 1}], {k,0, m - 1}]; %t A290818 b[m_, n_, x_]:=m^n*x^n + n^m*x^m - If[n<=m, n!*x^m*StirlingS2[m, n], m!*x^n*StirlingS2[n, m]]; %t A290818 T[m_, n_]:= b[m, n, 1] + p[m, n, 1]; %t A290818 Table[T[n, m -n + 1], {m, 10}, {n, m}]//Flatten %t A290818 (* _Indranil Ghosh_, Aug 12 2017, after PARI code *) %o A290818 (PARI) \\ See A. Howroyd note in A290586 for explanation. %o A290818 s(n,k)=sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); %o A290818 c(m,n,x)=sum(i=0, m-1, binomial(m, i) * (n^i - n!*stirling(i, n, 2))*x^i); %o A290818 p(m,n,x)={sum(k=0, m-1, sum(r=2*k, n-1, binomial(m, k) * binomial(n, r) * k! * s(r, k) * x^r * c(m-k, n-r, x) ))} %o A290818 b(m,n,x) = m^n*x^n + n^m*x^m - if(n<=m, n!*x^m*stirling(m, n, 2), m!*x^n*stirling(n, m, 2)); %o A290818 T(m,n) = b(m,n,1) + p(m,n,1); %o A290818 for(m=1,10,for(n=1,m,print1(T(n,m-n+1),", "))); %Y A290818 Row 2 is A290707 for n > 1. %Y A290818 Main diagonal is A290586. %Y A290818 Cf. A287274, A290632. %K A290818 nonn,tabl %O A290818 1,1 %A A290818 _Andrew Howroyd_, Aug 11 2017