A290822 Transitive numbers: Matula-Goebel numbers of transitive rooted trees.
1, 2, 4, 6, 8, 12, 14, 16, 18, 24, 28, 30, 32, 36, 38, 42, 48, 54, 56, 60, 64, 72, 76, 78, 84, 90, 96, 98, 106, 108, 112, 114, 120, 126, 128, 138, 144, 150, 152, 156, 162, 168, 180, 192, 196, 210, 212, 216, 222, 224, 228, 234, 238, 240, 252, 256, 262, 266, 270
Offset: 1
Keywords
Examples
The sequence of transitive rooted trees begins: 1 o 2 (o) 4 (oo) 6 (o(o)) 8 (ooo) 12 (oo(o)) 14 (o(oo)) 16 (oooo) 18 (o(o)(o)) 24 (ooo(o)) 28 (oo(oo)) 30 (o(o)((o))) 32 (ooooo) 36 (oo(o)(o)) 38 (o(ooo)) 42 (o(o)(oo)) 48 (oooo(o)) 54 (o(o)(o)(o)) 56 (ooo(oo)) 60 (oo(o)((o))) 64 (oooooo) 72 (ooo(o)(o)) 76 (oo(ooo)) 78 (o(o)(o(o))) 84 (oo(o)(oo)) 90 (o(o)(o)((o))) 96 (ooooo(o)) 98 (o(oo)(oo))
Links
- Robert P. P. McKone, Table of n, a(n) for n = 1..9999
Programs
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]]; Select[Range[270],Divisible[#,Times@@subprimes[#]]&]
Comments