cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290822 Transitive numbers: Matula-Goebel numbers of transitive rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 18, 24, 28, 30, 32, 36, 38, 42, 48, 54, 56, 60, 64, 72, 76, 78, 84, 90, 96, 98, 106, 108, 112, 114, 120, 126, 128, 138, 144, 150, 152, 156, 162, 168, 180, 192, 196, 210, 212, 216, 222, 224, 228, 234, 238, 240, 252, 256, 262, 266, 270
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2017

Keywords

Comments

A number x is transitive if whenever prime(y) divides x and prime(z) divides y, we have prime(z) divides x.

Examples

			The sequence of transitive rooted trees begins:
1  o
2  (o)
4  (oo)
6  (o(o))
8  (ooo)
12 (oo(o))
14 (o(oo))
16 (oooo)
18 (o(o)(o))
24 (ooo(o))
28 (oo(oo))
30 (o(o)((o)))
32 (ooooo)
36 (oo(o)(o))
38 (o(ooo))
42 (o(o)(oo))
48 (oooo(o))
54 (o(o)(o)(o))
56 (ooo(oo))
60 (oo(o)((o)))
64 (oooooo)
72 (ooo(o)(o))
76 (oo(ooo))
78 (o(o)(o(o)))
84 (oo(o)(oo))
90 (o(o)(o)((o)))
96 (ooooo(o))
98 (o(oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    subprimes[n_]:=If[n===1,{},Union@@Cases[FactorInteger[n],{p_,_}:>FactorInteger[PrimePi[p]][[All,1]]]];
    Select[Range[270],Divisible[#,Times@@subprimes[#]]&]