This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290847 #27 Feb 16 2025 08:33:50 %S A290847 1,7,57,973,32057,2079427,267620753,68649126489,35172776136145, %T A290847 36025104013571583,73784683970720501897,302228664636911612364581, %U A290847 2475873390079769597467385417,40564787539999607393632514635067,1329227699017403425105119604848703905 %N A290847 Number of dominating sets in the n-triangular graph. %C A290847 A dominating set on the triangular graph corresponds with an edge cover on the complete graph with optionally one vertex removed. %H A290847 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %H A290847 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JohnsonGraph.html">Johnson Graph</a> %H A290847 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularGraph.html">Triangular Graph</a> %F A290847 a(n) = A006129(n) + n * A006129(n-1). %F A290847 a(n) = 2^binomial(n,2) - Sum_{k=2..n} binomial(n,k)*A006129(n-k). %t A290847 b[n_]:=Sum[(-1)^(n - k)*Binomial[n, k]*2^Binomial[k, 2], {k, 0, n}]; a[n_]:=b[n] + n*b[n - 1]; Table[a[n], {n, 2, 20}] (* _Indranil Ghosh_, Aug 12 2017 *) %o A290847 (PARI) \\ here b(n) is A006129 %o A290847 b(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*2^binomial(k, 2)); %o A290847 a(n) = b(n) + n*b(n-1); %o A290847 (Python) %o A290847 from sympy import binomial %o A290847 def b(n): return sum((-1)**(n - k)*binomial(n, k)*2**binomial(k, 2) for k in range(n + 1)) %o A290847 def a(n): return b(n) + n*b(n - 1) %o A290847 print([a(n) for n in range(2, 21)]) # _Indranil Ghosh_, Aug 13 2017 %Y A290847 Cf. A000085, A006129, A193154, A287231, A287689, A290056, A290716. %K A290847 nonn %O A290847 2,2 %A A290847 _Andrew Howroyd_, Aug 12 2017