This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290867 #19 Mar 07 2020 11:26:23 %S A290867 0,0,0,0,1,0,5,0,15,0,35,0,70,0,123,1,0,195,5,0,285,15,0,420,25,0,586, %T A290867 39,2,0,818,53,4,0,1110,73,6,0,1451,103,10,0,1846,142,18,0,2361,181, %U A290867 26,0,2956,234,33,2,0,3704,287,40,4,0,4567,348,49,8 %N A290867 Irregular triangle read by rows: the number of points that are the intersections of k semicircles in the configuration A290447(n). %C A290867 Row lengths are A290726(n). %C A290867 The first entry of each row is 0, because an intersection requires at least 2 lines. %C A290867 The first row with 3 entries is for n=9, because that is the first configuration with a nontrivial intersection. %C A290867 Row sums give A290447. %H A290867 David Applegate, <a href="/A290867/b290867.txt">Table of n, a(n) for n = 1..800</a> %H A290867 David Applegate, <a href="/A290867/a290867.txt">Triangular table T(n,k) for n = 1..100</a> %H A290867 N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, <a href="https://vimeo.com/237029685">Part I</a>, <a href="https://vimeo.com/237030304">Part 2</a>, <a href="https://oeis.org/A290447/a290447_slides.pdf">Slides.</a> (Mentions this sequence) %H A290867 N. J. A. Sloane (in collaboration with Scott R. Shannon), <a href="/A331452/a331452.pdf">Art and Sequences</a>, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence. %F A290867 Sum_{k} T(n,k) * binomial(k,2) = binomial(n,4), because there are binomial(n,4) total pairs of semicircles, and an intersection of k consists of binomial(k,2) of those pairs. %F A290867 A290865(n) = binomial(n,2) + Sum_{k} T(n,k) * (k-1). %e A290867 Triangle begins: %e A290867 0; %e A290867 0; %e A290867 0; %e A290867 0, 1; %e A290867 0, 5; %e A290867 0, 15; %e A290867 0, 35; %e A290867 0, 70; %e A290867 0, 123, 1; %e A290867 0, 195, 5; %e A290867 0, 285, 15; %e A290867 0, 420, 25; %e A290867 0, 586, 39, 2; %Y A290867 Cf. A290447, A290726, A290865, A290866. %K A290867 nonn,tabf %O A290867 1,7 %A A290867 _David Applegate_, Aug 12 2017