A290892 p-INVERT of the positive integers, where p(S) = 1 - S^4.
0, 0, 0, 1, 8, 36, 120, 331, 808, 1852, 4248, 10312, 26968, 74012, 204968, 558253, 1483336, 3860588, 9938488, 25570103, 66214096, 172926104, 454504816, 1197527184, 3152221296, 8275051544, 21663395536, 56615219385, 147898879304, 386593228980, 1011521607736
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -69, 56, -28, 8, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290892 *)
-
PARI
concat(vector(3), Vec(x^3 / ((1-3*x+x^2)*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)) + O(x^50))) \\ Colin Barker, Aug 16 2017
Formula
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 69*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x^3 / ((1-3*x+x^2)*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)). - Colin Barker, Aug 16 2017
Comments