A290897 p-INVERT of the positive integers, where p(S) = 1 - S - S^3.
1, 3, 9, 29, 95, 307, 976, 3073, 9645, 30283, 95207, 299625, 943363, 2970320, 9351621, 29439359, 92671625, 291715157, 918275995, 2890621063, 9099375792, 28643956245, 90168412937, 283841284899, 893503898503, 2812659866565, 8853968158791, 27871395427616
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7, -19, 27, -19, 7, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - s - s^3; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290897 *)
-
PARI
Vec((1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Aug 16 2017
Formula
a(n) = 7*a(n-1) - 19*a(n-2) + 27*a(n-3) - 19*a(n-4) + 7*a(n-5) - a(n-6).
G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)). - Colin Barker, Aug 16 2017
Comments