A290898 p-INVERT of the positive integers, where p(S) = 1 - S - S^4.
1, 3, 8, 22, 65, 203, 647, 2053, 6423, 19811, 60490, 183750, 557551, 1693921, 5157224, 15731043, 48041589, 146785994, 448475954, 1369853581, 4182850121, 12769287055, 38976737437, 118967979141, 363132913719, 1108463577238, 3383732698880, 10329587789993
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -34, 71, -89, 71, -34, 9, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = 1 - s - s^4; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290898 *)
-
PARI
Vec((1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4) / (1 - 9*x + 34*x^2 - 71*x^3 + 89*x^4 - 71*x^5 + 34*x^6 - 9*x^7 + x^8) + O(x^40)) \\ Colin Barker, Aug 18 2017
Formula
a(n) = 9*a(n-1) - 34*a(n-2) + 71*a(n-3) - 89*a(n-4) + 71*a(n-5) - 34*a(n-6) + 9*a(n-7) - a(n-8).
G.f.: (1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4) / (1 - 9*x + 34*x^2 - 71*x^3 + 89*x^4 - 71*x^5 + 34*x^6 - 9*x^7 + x^8). - Colin Barker, Aug 18 2017
Comments