A290918 p-INVERT of the positive integers, where p(S) = (1 - S)^3.
3, 12, 43, 147, 486, 1566, 4944, 15351, 47009, 142278, 426315, 1266300, 3732705, 10928910, 31806583, 92069229, 265215756, 760621914, 2172669846, 6183333681, 17538237677, 49590486888, 139817553417, 393157465848, 1102792703055, 3086146454592, 8617872504643
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -30, 45, -30, 9, -1)
Programs
Formula
G.f.: (3 - 15 x + 25 x^2 - 15 x^3 + 3 x^4)/(1 - 3 x + x^2)^3.
a(n) = 9*a(n-1) - 30*a(n-2) + 45*a(n-3) - 30*a(n-4) + 9*a(n-5) - a(n-6).
(a(n)) is the p-INVERT of (1,1,1,1,1...) using p(S) = (1 - S - S^2)^3.
Comments