A290920 p-INVERT of the positive integers, where p(S) = (1 - S)^5.
5, 25, 110, 450, 1746, 6505, 23465, 82435, 283270, 955258, 3169520, 10368490, 33497790, 107028120, 338582738, 1061557195, 3301399385, 10191612315, 31250047480, 95226980516, 288523285450, 869559080385, 2607834545025, 7785230674580, 23142279699355
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15, -95, 330, -685, 873, -685, 330, -95, 15, -1)
Programs
-
Mathematica
z = 60; s = x/(1 - x)^2; p = (1 - s)^5; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290920 *)
-
PARI
Vec((5 - 50*x + 210*x^2 - 475*x^3 + 621*x^4 - 475*x^5 + 210*x^6 - 50*x^7 + 5*x^8) / (1 - 3*x + x^2)^5 + O(x^30)) \\ Colin Barker, Aug 24 2017
Formula
a(n) = 15*a(n-1) - 95*a(n-2) + 330*a(n-3) - 685*a(n-4) + 873*a(n-5) - 695*a(n-6) + 330*a(n-7) - 95*a(n-8) + 15*a(n-9) - a(n-10).
G.f.: (5 - 50*x + 210*x^2 - 475*x^3 + 621*x^4 - 475*x^5 + 210*x^6 - 50*x^7 + 5*x^8) / (1 - 3*x + x^2)^5. - Colin Barker, Aug 24 2017
Comments