This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290931 #27 Feb 16 2025 08:33:50 %S A290931 6,6,15,18,20,21,28,35,40,40,42,42,45,45,52,54,56,63,66,66,72,75,77, %T A290931 88,91,95,99,100,104,105,105,110,112,117,120,126,130,143,153,153,156, %U A290931 160,160,165,165,168,170,175,186,187,189,190,195,196,198,198,204,208,208 %N A290931 Radius of a circle enclosing three mutually tangent circles, such that they have coprime integer radii and with collectively six distinct points of tangency. %C A290931 Descartes's theorem: 4 kissing circles with radii a,b,c,d satisfy %C A290931 (1/a + 1/b + 1/c + 1/d)^2 = 2 (1/a^2 + 1/b^2 + 1/c^2 + 1/d^2). %C A290931 When the largest circle encloses other 3 circles, its radius is negative. %C A290931 If all circles are tangent to each other at the same point, Descartes's theorem does not apply. In this case, all circles can have any radius. %H A290931 Ray Chandler, <a href="/A290931/b290931.txt">Table of n, a(n) for n = 1..837</a> %H A290931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SoddyCircles.html">Soddy Circles.</a> %H A290931 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TangentCircles.html">Tangent Circles</a> %H A290931 Wikipedia, <a href="https://en.wikipedia.org/wiki/Descartes%27_theorem">Descartes' theorem</a> %e A290931 The table gives the first 8 examples: %e A290931 a b c d %e A290931 == == == == %e A290931 6 3 2 1 %e A290931 6 3 3 2 %e A290931 15 10 3 2 %e A290931 18 9 8 8 %e A290931 20 12 5 3 %e A290931 21 14 7 6 %e A290931 28 21 4 3 %e A290931 35 15 14 6 %t A290931 aMax = 150; (* WARNING: O(n^3) *) %t A290931 Do[ %t A290931 If[x \[NotElement] Rationals, Continue[]]; %t A290931 {d1, d2} = 1/(-(1/a) + 1/b + 1/c + {1, -1} 2 x); %t A290931 If[GCD[a, b, c, d1] == 1, {a, b, c, d1} // Sow]; %t A290931 If[d2 > c || d2 == d1, Continue[]]; %t A290931 If[GCD[a, b, c, d2] == 1, {a, b, c, d2} // Sow]; %t A290931 , {a, aMax}, {b, 2, a - 2}, {c, Min[b, a - b]} %t A290931 , {x, {Sqrt[(-a + b + c)/(-a b c)]}}] // Reap // Last // Last // TableForm %Y A290931 Cf. A290508 (4 circles tangent externally). %K A290931 nonn %O A290931 1,1 %A A290931 _Albert Lau_, Aug 13 2017 %E A290931 Description clarified by _Ray Chandler_, Aug 19 2017