This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290932 #16 Aug 24 2017 20:12:20 %S A290932 1,1,5,40,431,5886,96817,1862890,41043375,1018584610,28108489541, %T A290932 853617865134,28287119604955,1015630741097350,39273014068691145, %U A290932 1627118268024495586,71904849762914854703,3375959341815207350850,167810405947367539063885,8803814897608815310714270 %N A290932 Sum of the LCM of cycle lengths over all endofunctions on [n]. %H A290932 Alois P. Heinz, <a href="/A290932/b290932.txt">Table of n, a(n) for n = 0..150</a> %F A290932 a(n) = Sum_{k=1..A000793(n)} k * A222029(n,k). %p A290932 b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!* %p A290932 b(n-j, ilcm(m, j))*binomial(n-1, j-1), j=1..n)) %p A290932 end: %p A290932 a:= n-> add(b(j, 1)*n^(n-j)*binomial(n-1, j-1), j=0..n): %p A290932 seq(a(n), n=0..25); %t A290932 T[n_, k_] := T[n, k] = If[n == 0, k, Sum[(j - 1)! * T[n - j, LCM[k, j]]*Binomial[n - 1, j - 1], {j, n}]]; {1}~Join~Table[Sum[T[j, 1]*n^(n - j)*Binomial[n - 1, j - 1], {j, 0, n}], {n, 19}] (* _Michael De Vlieger_, Aug 17 2017 *) %Y A290932 Cf. A000793, A060014, A208231, A208248, A222029. %K A290932 nonn %O A290932 0,3 %A A290932 _Alois P. Heinz_, Aug 13 2017