This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290941 #10 Feb 16 2025 08:33:50 %S A290941 1,5,45,801,27825,1888509,251530965,66071455065,34377356632185, %T A290941 35547790276600245,73223899601462711325,300932502371711624263185, %U A290941 2469959282065905379932069825,40511383384524208761581247597165,1328271546538715856399886647330605925 %N A290941 Number of dominating sets in the triangular honeycomb bishop graph. %H A290941 Andrew Howroyd, <a href="/A290941/b290941.txt">Table of n, a(n) for n = 1..50</a> %H A290941 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %o A290941 (PARI) %o A290941 Collect(sig,v,r,x)={forstep(r=r, 1, -1, my(w=sig[r]+1); v=vector(#v, k, sum(j=1, k, binomial(#v-j,k-j)*v[j]*x^(k-j)*(1+x)^(w-#v+j-1))-v[k])); v[#v]} %o A290941 DomSetCount(sig,x)={my(v=[1]); my(total=Collect(sig,v,#sig,x)); forstep(r=#sig, 1, -1, my(w=sig[r]+1); total+=Collect(sig, vector(w,k,if(k<=#v,v[k])), r-1, x); v=vector(w, k, sum(j=1, min(k,#v), binomial(w-j, k-j)*v[j]*x^(k-j)*(1+x)^(j-1)))); total} %o A290941 a(n)=DomSetCount(Vecrev([1..n]),1); \\ _Andrew Howroyd_, Nov 05 2017 %Y A290941 Cf. A290875 (minimal dominating sets). %K A290941 nonn %O A290941 1,2 %A A290941 _Eric W. Weisstein_, Aug 14 2017 %E A290941 Terms a(8) and beyond from _Andrew Howroyd_, Nov 05 2017