cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290941 Number of dominating sets in the triangular honeycomb bishop graph.

This page as a plain text file.
%I A290941 #10 Feb 16 2025 08:33:50
%S A290941 1,5,45,801,27825,1888509,251530965,66071455065,34377356632185,
%T A290941 35547790276600245,73223899601462711325,300932502371711624263185,
%U A290941 2469959282065905379932069825,40511383384524208761581247597165,1328271546538715856399886647330605925
%N A290941 Number of dominating sets in the triangular honeycomb bishop graph.
%H A290941 Andrew Howroyd, <a href="/A290941/b290941.txt">Table of n, a(n) for n = 1..50</a>
%H A290941 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>
%o A290941 (PARI)
%o A290941 Collect(sig,v,r,x)={forstep(r=r, 1, -1, my(w=sig[r]+1); v=vector(#v, k, sum(j=1, k, binomial(#v-j,k-j)*v[j]*x^(k-j)*(1+x)^(w-#v+j-1))-v[k])); v[#v]}
%o A290941 DomSetCount(sig,x)={my(v=[1]); my(total=Collect(sig,v,#sig,x)); forstep(r=#sig, 1, -1, my(w=sig[r]+1); total+=Collect(sig, vector(w,k,if(k<=#v,v[k])), r-1, x); v=vector(w, k, sum(j=1, min(k,#v), binomial(w-j, k-j)*v[j]*x^(k-j)*(1+x)^(j-1)))); total}
%o A290941 a(n)=DomSetCount(Vecrev([1..n]),1); \\ _Andrew Howroyd_, Nov 05 2017
%Y A290941 Cf. A290875 (minimal dominating sets).
%K A290941 nonn
%O A290941 1,2
%A A290941 _Eric W. Weisstein_, Aug 14 2017
%E A290941 Terms a(8) and beyond from _Andrew Howroyd_, Nov 05 2017