This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290942 #5 Feb 16 2025 08:33:50 %S A290942 1,1,1,1,0,1,1,2,2,1,1,0,2,2,2,3,1,2,2,2,3,2,4,3,3,3,2,5,4,5,4,2,3,3, %T A290942 6,6,5,5,4,5,7,8,8,7,6,6,6,8,9,9,9,7,8,9,9,11,10,11,11,10,12,10,14,15, %U A290942 14,14,11,13,13,17,17,14,15,14,17,20,19,20,20,20,21,20,21,21,25,26,23,22,21,24,27 %N A290942 Number of partitions of n into distinct generalized pentagonal numbers (A001318). %H A290942 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a> %H A290942 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %H A290942 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A290942 G.f.: Product_{k>=1} (1 + x^(k*(3*k-1)/2))*(1 + x^(k*(3*k+1)/2)). %e A290942 a(15) = 3 because we have [15], [12, 2, 1] and [7, 5, 2, 1]. %t A290942 nmax = 90; CoefficientList[Series[Product[(1 + x^(k (3 k - 1)/2)) (1 + x^(k (3 k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A290942 Cf. A000009, A001318, A095699, A218379, A218380, A279221, A280952, A281083. %K A290942 nonn %O A290942 0,8 %A A290942 _Ilya Gutkovskiy_, Aug 14 2017