A290947 Primes p1 > 3, such that p2 = 3p1-2 and p3 = (p1*p2+1)/2 are also primes, so p1*p2*p3 is a triangular 3-Carmichael number.
7, 13, 37, 43, 61, 193, 211, 271, 307, 331, 601, 673, 727, 757, 823, 1063, 1297, 1447, 1597, 1621, 1657, 1693, 2113, 2281, 2347, 2437, 2503, 3001, 3067, 3271, 3733, 4093, 4201, 4957, 5581, 6073, 6607, 7321, 7333, 7723, 7867, 8287, 8581, 8647, 9643, 10243
Offset: 1
Keywords
Examples
p1 = 7 is in the sequence since with p2 = 3*7-2 = 19 and p3 = (7*19+1)/2 = 67 they are all primes. 7*19*67 = 8911 is a triangular 3-Carmichael number.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
seq = {}; Do[p1 = 6 k + 1; p2 = 3 p1 - 2; p3 = (p1*p2 + 1)/2; If[AllTrue[{p1, p2, p3}, PrimeQ], AppendTo[seq, p1]], {k, 1, 2000}]; seq
-
PARI
list(lim)=my(v=List()); forprime(p=7,lim, if(isprime(3*p-2) && isprime((p*(3*p-2)+1)/2), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 14 2017
Comments