cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290949 Number of connected dominating sets in the n X n rook complement graph.

This page as a plain text file.
%I A290949 #28 Feb 16 2025 08:33:50
%S A290949 1,0,325,63899,33542996,68719407048,562949953031061,
%T A290949 18446744073707483871,2417851639229258338870480,
%U A290949 1267650600228229401496650962840,2658455991569831745807614120307387245,22300745198530623141535718272648360299106443
%N A290949 Number of connected dominating sets in the n X n rook complement graph.
%H A290949 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedDominatingSet.html">Connected Dominating Set</a>
%H A290949 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>
%F A290949 a(n) = 2^(n^2) - 2*n*(2^n - 1) + n^2 - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 3*binomial(n,2)^2 - 1 for n > 1. - _Andrew Howroyd_, Jan 14 2018
%t A290949 Table[If[n == 1, 1, 2^(n^2) - 2 n (2^n - 1) + n^2 (1 - 2 (2^(n - 1) - 1)^2 + (n - 1)^2) - 3 Binomial[n, 2]^2 - 1], {n, 20}] (* _Eric W. Weisstein_, Jan 15 2018 *)
%o A290949 (PARI) a(n) = if(n==1, 1, 2^(n^2) - 2*n*(2^n - 1) + n^2 - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 3*binomial(n,2)^2 - 1); \\ _Andrew Howroyd_, Jan 14 2018
%Y A290949 Cf. A291593, A292073.
%K A290949 nonn
%O A290949 1,3
%A A290949 _Eric W. Weisstein_, Sep 14 2017
%E A290949 a(6)-a(12) from _Andrew Howroyd_, Jan 14 2018