This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290963 #15 Aug 16 2017 17:16:27 %S A290963 3,7,29,41,53,59,71,83,89,113,131,137,149,157,167,173,179,197,199,227, %T A290963 233,239,251,263,269,281,293,317,347,379,401,409,419,431,457,463,467, %U A290963 479,491,503,509,521,569,617,619,641,643,647,661,677,691,701,733,743,757,761,769,797,823,829,859,883,911 %N A290963 Primes p such that sum of digits of p^3 is semiprime. %H A290963 Charles R Greathouse IV, <a href="/A290963/b290963.txt">Table of n, a(n) for n = 1..10000</a> %e A290963 a(2) = 7 is prime: 7^3 = 343; 3 + 4 + 3 = 10 = 2*5 that is semiprime. %e A290963 a(3) = 29 is prime : 29^3 = 24389; 2 + 4 + 3 + 8 + 9 = 26 = 2*13 that is semiprime. %e A290963 a(5) = 53 is prime : 53^3 = 148877; 1 + 4 + 8 + 8 + 7 + 7 = 35 = 5*7 that is semiprime. %p A290963 select(p -> isprime(p) and numtheory:-bigomega(convert(convert(p^3,base,10),`+`)) = 2, [seq(i,i=3..1000,2)]); # _Robert Israel_, Aug 15 2017 %t A290963 Select[Prime[Range[500]], PrimeOmega[Plus @@ IntegerDigits[#^3]] == 2 &] %o A290963 (PARI) lista(nn) = forprime(p=3, nn, if(bigomega(sumdigits(p^3)) == 2, print1(p, ", "))); \\ _Altug Alkan_, Aug 16 2017 %Y A290963 Cf. A000040, A007605, A001358, A235398, A235399. %K A290963 nonn,base %O A290963 1,1 %A A290963 _K. D. Bajpai_, Aug 15 2017