This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290967 #21 Aug 19 2017 13:22:30 %S A290967 929,3833,4079,6737,6983,7229,8369,9887,10133,11273,11519,13037,14177, %T A290967 14423,14669,15809,17327,17573,18713,18959,20477,21617,21863,22109, %U A290967 24767,25013,27917 %N A290967 Smallest known example of a 3 X 3 X 3 generalized arithmetic progression (GAP) of 27 primes, listed in increasing order. %C A290967 27 primes arranged in a 3 X 3 X 3 cube such that the differences between the numbers in the 3 coordinate directions are constants. The 3 constants are 2904, 3150, and 7440. %C A290967 The arrangement was found in an undergraduate project at Westfield State College by Jeffrey P. Vanasse and Michael E. Guenette, working under the direction of Mathematics Department faculty members Marcus Jaiclin and Julian F. Fleron. %H A290967 Hugo Pfoertner, <a href="/A290967/a290967.gif">Illustration of arrangement</a>, copied from announcement of original authors. %H A290967 Westfield State College, <a href="https://www.sciencedaily.com/releases/2008/11/081117220257.htm">Mathematics Students Make Prime Discovery</a>, ScienceDaily, 18 November 2008. %e A290967 : -> +2904 -> %e A290967 : +-----+-----+-----+ %e A290967 : | | 929| 3833| 6737|\ %e A290967 : +3150 | 4079| 6983| 9887| \ %e A290967 : V | 7229|10133|13037| \ %e A290967 : +-----+-----+-----+ \ %e A290967 : \ \ +-----+-----+-----+ %e A290967 : +7440 \ | 8369|11273|14177|\ %e A290967 : \ \ |11519|14423|17327| \ \ %e A290967 : \|14669|17573|20477| \ +7440 %e A290967 : +-----+-----+-----+ \ \ %e A290967 : \ +-----+-----+-----+ %e A290967 : \ |15809|18713|21617| | %e A290967 : \ |18959|21863|24767| +3150 %e A290967 : \|22109|25013|27917| V %e A290967 : +-----+-----+-----+ %e A290967 : -> +2904 -> %p A290967 sort([seq(seq(seq(929+i*3150+k*2904+j*7440, k=0..2), i=0..2), j=0..2)])[]; %p A290967 # _Alois P. Heinz_, Aug 16 2017 %Y A290967 Cf. A005115. %K A290967 nonn,fini,full %O A290967 1,1 %A A290967 _Hugo Pfoertner_, Aug 15 2017