This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290968 #21 Jul 11 2024 07:50:30 %S A290968 1,1,1,-1,1,1,5,5,9,11,21,33,57,89,145,231,377,609,989,1597,2585,4179, %T A290968 6765,10945,17713,28657,46369,75023,121393,196417,317813,514229, %U A290968 832041,1346267,2178309,3524577,5702889,9227465,14930353,24157815 %N A290968 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) + a(n-5), with a(0)=a(1)=a(2)=1, a(3)=-1 and a(4)=1. %C A290968 The array of successive differences begins: %C A290968 1, 1, 1, -1, 1, 1, 5, 5, 9, 11, 21, 33, 57, ... %C A290968 0, 0, -2, 2, 0, 4, 0, 4, 2, 10, 12, 24, 32, ... %C A290968 0, -2, 4, -2, 4, -4, 4, -2, 8, 2, 12, 8, 24, ... %C A290968 -2, 6, -6, 6, -8, 8, -6, 10, -6, 10, -4, 16, 6, ... %C A290968 8, -12, 12, -14, 16, -14, 16, -16, 16, -14, 20, -10, 24, ... %C A290968 ... %C A290968 First row is a(n) = 2*A141325(n) - A141325(n+1). %C A290968 Main diagonal is A099430(n). %C A290968 The first upper subdiagonal, 1, -2, -2, -8, -14, ..., has -3*A078008(n) as first differences. %C A290968 The second upper subdiagonal is A000079(n) = 2^n. %C A290968 a(n) is related to Fibonacci numbers a(n) = A000045(n-2) + period 6: repeat [2, 0, 1, -2, 0, -1]. %H A290968 G. C. Greubel, <a href="/A290968/b290968.txt">Table of n, a(n) for n = 0..1000</a> %H A290968 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,1). %F A290968 G.f.: (1-x^2-2*x^3+x^4)/((1+x)*(1-x+x^2)*(1-x-x^2)). %F A290968 a(n) ~ phi^(n-2)/sqrt(5), where phi is the golden ratio. %F A290968 a(n) = (1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10-1/2) - (-1/2 + sqrt(5)/2)^n*(3*sqrt(5)/10 + 1/2)*(-1)^n + 2*sqrt(3)*sin(Pi*(n/3 + 1/3))/3 + (-1)^n. - _Eric Simon Jacob_, Jul 11 2024 %t A290968 LinearRecurrence[{1,1,-1,1,1}, {1,1,1,-1,1}, 40] %o A290968 (PARI) my(x='x+O('x^40)); Vec((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))) \\ _G. C. Greubel_, Jun 11 2019 %o A290968 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2)) )); // _G. C. Greubel_, Jun 11 2019 %o A290968 (Sage) ((1-x^2-2*x^3+x^4)/((1+x^3)*(1-x-x^2))).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 11 2019 %Y A290968 Cf. A000045, A078008, A099430, A131531, A141325. %K A290968 easy,sign %O A290968 0,7 %A A290968 _Jean-François Alcover_ and _Paul Curtz_, Aug 16 2017