This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291000 #10 Sep 25 2017 02:24:19 %S A291000 1,3,9,26,74,210,596,1692,4804,13640,38728,109960,312208,886448, %T A291000 2516880,7146144,20289952,57608992,163568448,464417728,1318615104, %U A291000 3743926400,10630080640,30181847168,85694918912,243312448256,690833811712,1961475291648,5569190816256 %N A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3. %C A291000 Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291000 In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence: %C A291000 p(S) t(1,1,1,1,1,...) %C A291000 1 - S A000079 %C A291000 1 - S^2 A000079 %C A291000 1 - S^3 A024495 %C A291000 1 - S^4 A000749 %C A291000 1 - S^5 A139761 %C A291000 1 - S^6 A290993 %C A291000 1 - S^7 A290994 %C A291000 1 - S^8 A290995 %C A291000 1 - S - S^2 A001906 %C A291000 1 - S - S^3 A116703 %C A291000 1 - S - S^4 A290996 %C A291000 1 - S^3 - S^6 A290997 %C A291000 1 - S^2 - S^3 A095263 %C A291000 1 - S^3 - S^4 A290998 %C A291000 1 - 2 S^2 A052542 %C A291000 1 - 3 S^2 A002605 %C A291000 1 - 4 S^2 A015518 %C A291000 1 - 5 S^2 A163305 %C A291000 1 - 6 S^2 A290999 %C A291000 1 - 7 S^2 A291008 %C A291000 1 - 8 S^2 A291001 %C A291000 (1 - S)^2 A045623 %C A291000 (1 - S)^3 A058396 %C A291000 (1 - S)^4 A062109 %C A291000 (1 - S)^5 A169792 %C A291000 (1 - S)^6 A169793 %C A291000 (1 - S^2)^2 A024007 %C A291000 1 - 2 S - 2 S^2 A052530 %C A291000 1 - 3 S - 2 S^2 A060801 %C A291000 (1 - S)(1 - 2 S) A053581 %C A291000 (1 - 2 S)(1 - 3 S) A291002 %C A291000 (1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S) A291003 %C A291000 (1 - 2 S)^2 A120926 %C A291000 (1 - 3 S)^2 A291004 %C A291000 1 + S - S^2 A000045 (Fibonacci numbers starting with -1) %C A291000 1 - S - S^2 - S^3 A291000 %C A291000 1 - S - S^2 - S^3 - S^4 A291006 %C A291000 1 - S - S^2 - S^3 - S^4 - S^5 A291007 %C A291000 1 - S^2 - S^4 A290990 %C A291000 (1 - S)(1 - 3 S) A291009 %C A291000 (1 - S)(1 - 2 S)(1 - 3 S) A291010 %C A291000 (1 - S)^2 (1 - 2 S) A291011 %C A291000 (1 - S^2)(1 - 2 S) A291012 %C A291000 (1 - S^2)^3 A291013 %C A291000 (1 - S^3)^2 A291014 %C A291000 1 - S - S^2 + S^3 A045891 %C A291000 1 - 2 S - S^2 + S^3 A291015 %C A291000 1 - 3 S + S^2 A136775 %C A291000 1 - 4 S + S^2 A291016 %C A291000 1 - 5 S + S^2 A291017 %C A291000 1 - 6 S + S^2 A291018 %C A291000 1 - S - S^2 - S^3 + S^4 A291019 %C A291000 1 - S - S^2 - S^3 - S^4 + S^5 A291020 %C A291000 1 - S - S^2 - S^3 + S^4 + S^5 A291021 %C A291000 1 - S - 2 S^2 + 2 S^3 A175658 %C A291000 1 - 3 S^2 + 2 S^3 A291023 %C A291000 (1 - 2 S^2)^2 A291024 %C A291000 (1 - S^3)^3 A291143 %C A291000 (1 - S - S^2)^2 A209917 %H A291000 Clark Kimberling, <a href="/A291000/b291000.txt">Table of n, a(n) for n = 0..1000</a> %H A291000 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4, -4, 2) %F A291000 G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3). %F A291000 a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4. %t A291000 z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3; %t A291000 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) %t A291000 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291000 *) %Y A291000 Cf. A000012, A289780. %K A291000 nonn,easy %O A291000 0,2 %A A291000 _Clark Kimberling_, Aug 22 2017