cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.

This page as a plain text file.
%I A291000 #10 Sep 25 2017 02:24:19
%S A291000 1,3,9,26,74,210,596,1692,4804,13640,38728,109960,312208,886448,
%T A291000 2516880,7146144,20289952,57608992,163568448,464417728,1318615104,
%U A291000 3743926400,10630080640,30181847168,85694918912,243312448256,690833811712,1961475291648,5569190816256
%N A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.
%C A291000 Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).  Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
%C A291000 In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence:
%C A291000 p(S)                             t(1,1,1,1,1,...)
%C A291000 1 - S                                A000079
%C A291000 1 - S^2                              A000079
%C A291000 1 - S^3                              A024495
%C A291000 1 - S^4                              A000749
%C A291000 1 - S^5                              A139761
%C A291000 1 - S^6                              A290993
%C A291000 1 - S^7                              A290994
%C A291000 1 - S^8                              A290995
%C A291000 1 - S - S^2                          A001906
%C A291000 1 - S - S^3                          A116703
%C A291000 1 - S - S^4                          A290996
%C A291000 1 - S^3 - S^6                        A290997
%C A291000 1 - S^2 - S^3                        A095263
%C A291000 1 - S^3 - S^4                        A290998
%C A291000 1 - 2 S^2                            A052542
%C A291000 1 - 3 S^2                            A002605
%C A291000 1 - 4 S^2                            A015518
%C A291000 1 - 5 S^2                            A163305
%C A291000 1 - 6 S^2                            A290999
%C A291000 1 - 7 S^2                            A291008
%C A291000 1 - 8 S^2                            A291001
%C A291000 (1 - S)^2                            A045623
%C A291000 (1 - S)^3                            A058396
%C A291000 (1 - S)^4                            A062109
%C A291000 (1 - S)^5                            A169792
%C A291000 (1 - S)^6                            A169793
%C A291000 (1 - S^2)^2                          A024007
%C A291000 1 - 2 S - 2 S^2                      A052530
%C A291000 1 - 3 S - 2 S^2                      A060801
%C A291000 (1 - S)(1 - 2 S)                     A053581
%C A291000 (1 - 2 S)(1 - 3 S)                   A291002
%C A291000 (1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S)   A291003
%C A291000 (1 - 2 S)^2                          A120926
%C A291000 (1 - 3 S)^2                          A291004
%C A291000 1 + S - S^2                          A000045  (Fibonacci numbers starting with -1)
%C A291000 1 - S - S^2 - S^3                    A291000
%C A291000 1 - S - S^2 - S^3 - S^4              A291006
%C A291000 1 - S - S^2 - S^3 - S^4 - S^5        A291007
%C A291000 1 - S^2 - S^4                        A290990
%C A291000 (1 - S)(1 - 3 S)                     A291009
%C A291000 (1 - S)(1 - 2 S)(1 - 3 S)            A291010
%C A291000 (1 - S)^2 (1 - 2 S)                  A291011
%C A291000 (1 - S^2)(1 - 2 S)                   A291012
%C A291000 (1 - S^2)^3                          A291013
%C A291000 (1 - S^3)^2                          A291014
%C A291000 1 - S - S^2 + S^3                    A045891
%C A291000 1 - 2 S - S^2 + S^3                  A291015
%C A291000 1 - 3 S + S^2                        A136775
%C A291000 1 - 4 S + S^2                        A291016
%C A291000 1 - 5 S + S^2                        A291017
%C A291000 1 - 6 S + S^2                        A291018
%C A291000 1 - S - S^2 - S^3 + S^4              A291019
%C A291000 1 - S - S^2 - S^3 - S^4 + S^5        A291020
%C A291000 1 - S - S^2 - S^3 + S^4 + S^5        A291021
%C A291000 1 - S - 2 S^2 + 2 S^3                A175658
%C A291000 1 - 3 S^2 + 2 S^3                    A291023
%C A291000 (1 - 2 S^2)^2                        A291024
%C A291000 (1 - S^3)^3                          A291143
%C A291000 (1 - S - S^2)^2                      A209917
%H A291000 Clark Kimberling, <a href="/A291000/b291000.txt">Table of n, a(n) for n = 0..1000</a>
%H A291000 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4, -4, 2)
%F A291000 G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3).
%F A291000 a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4.
%t A291000 z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
%t A291000 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
%t A291000 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291000 *)
%Y A291000 Cf. A000012, A289780.
%K A291000 nonn,easy
%O A291000 0,2
%A A291000 _Clark Kimberling_, Aug 22 2017