This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291022 #16 Aug 31 2017 14:17:45 %S A291022 6,12,18,20,24,30,36,40,42,48,54,80,96,100,108,140,150,156,160,162, %T A291022 192,198,200,220,264,272,280,294,312,320,324,342,384,396,400,440,486, %U A291022 500,510,520,528,544,546,560,624,640,684,702,714,750,768,798,800,880,912 %N A291022 Even numbers m such that every odd divisor > 1 of m is the sum of two divisors. %C A291022 The numbers of the form p*2^q (6, 12, 20, ...) where p belongs to the set {3, 5, 17, 257, 65537} (A019434: Fermat primes or primes of the form 2^(2^k) + 1, for some k >= 0) are in the sequence. %C A291022 The sequence is included in A088723 (Numbers having at least one divisor d>1 such that also d+1 is a divisor). %e A291022 42 is in the sequence because the divisors are {1, 2, 3, 6, 7, 14, 21, 42} and 3 = 2 + 1, 7 = 6 + 1 and 21 = 14 + 7. %p A291022 with(numtheory):EV:=array(1..100):OD:=array(1..100):nn:=5*10^4: %p A291022 for n from 2 by 2 to nn do: %p A291022 d:=divisors(n):n1:=nops(d):k0:=0:k1:=0:it:=0: %p A291022 for i from 1 to n1 do: %p A291022 if irem(d[i],2)=0 %p A291022 then %p A291022 k0:=k0+1:EV[k0]:=d[i]: %p A291022 else %p A291022 k1:=k1+1:OD[k1]:=d[i]: %p A291022 fi: %p A291022 od: %p A291022 for j from 2 to k1 do: %p A291022 for k from 1 to k1 do: %p A291022 for l from 1 to k0 do: %p A291022 if OD[j]=OD[k]+EV[l] %p A291022 then %p A291022 it:=it+1: %p A291022 else %p A291022 fi: %p A291022 od: %p A291022 od: %p A291022 od: %p A291022 if it>0 and it = k1-1 %p A291022 then %p A291022 printf(`%d, `,n): %p A291022 else %p A291022 fi: %p A291022 od: %Y A291022 Cf. A019434, A088723. %K A291022 nonn %O A291022 1,1 %A A291022 _Michel Lagneau_, Aug 31 2017