This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A291035 #7 Mar 14 2025 04:26:34 %S A291035 1,3,5,12,27,58,130,285,629,1389,3060,6753,14892,32844,72445,159775, %T A291035 352401,777244,1714259,3780930,8339090,18392449,40565829,89470733, %U A291035 197333940,435233685,959938112,2117210180,4669654005,10299246171,22715702489,50101058976 %N A291035 p-INVERT of (1,0,0,1,0,0,1,0,0,...), where p(S) = 1 - S - 2 S^2. %C A291035 Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). %C A291035 See A291728 for a guide to related sequences. %H A291035 Clark Kimberling, <a href="/A291035/b291035.txt">Table of n, a(n) for n = 0..1000</a> %H A291035 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,2,-1,0,-1). %F A291035 G.f.: -(1 + x)*(-1 - x + x^2)/((-1 - x + x^3)*(-1 + 2*x + x^3)). %F A291035 a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) - a(n-6) for n >= 7. %t A291035 z = 60; s = x/(x - x^3); p = 1 - s - 2 s^2; %t A291035 Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079978 *) %t A291035 Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291035 *) %Y A291035 Cf. A079978, A289918, A290616. %K A291035 nonn,easy %O A291035 0,2 %A A291035 _Clark Kimberling_, Sep 14 2017