A292390 Numbers n such that psi(n) = 2*phi(n).
3, 9, 27, 35, 81, 175, 243, 245, 729, 875, 1045, 1225, 1715, 2187, 4375, 5225, 6125, 6561, 8575, 11495, 12005, 19683, 19855, 21875, 24871, 26125, 29029, 30625, 42875, 50065, 57475, 58435, 59049, 60025, 64285, 84035, 87685, 99275, 109375, 126445, 130625, 137885, 140335, 153125
Offset: 1
Examples
3^k is a term for all k > 0 since psi(3^k) = 4*3^(k-1) = 2*phi(3^k).
Links
- Robert Israel, Table of n, a(n) for n = 1..400
Programs
-
Maple
pp:= n -> mul((p+1)/(p-1), p = numtheory:-factorset(n)): select(pp=2, [seq(i,i=1..200000,2)]); # Robert Israel, Sep 15 2017
-
Mathematica
psi[n_] := n*Sum[MoebiusMu[d]^2/d, {d, Divisors@n}]; Select[ Range@ 200000, 2EulerPhi[#] == psi[#] &]
-
PARI
a001615(n) = my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)); isok(n) = a001615(n)==2*eulerphi(n); \\ after Charles R Greathouse IV at A001615
Comments