A291067 Largest finite number of distinct words arising in Watanabe's tag system {00, 1011} applied to a binary word w, over all starting words w of length n.
6, 5, 177, 178, 175, 174, 177, 178, 179, 180, 171, 550, 551, 548, 545, 550, 549, 610, 611, 608, 603, 14864, 14863, 14870, 14875, 14876, 15583, 15594, 15741, 15744, 15745, 15742, 15745, 15746, 15743, 114886, 114887, 114884, 114887, 114888, 114885, 404986
Offset: 1
Keywords
Examples
Examples of strings that achieve these records: "1", "10", "100", "0001", "10010", "100000", "1000000". For example, at length 3, the trajectory of 100 begins 100, 1011, 11011, 111011, 0111011, 101100, 1001011, 10111011, 110111011, 1110111011, 01110111011, 1011101100, 11011001011, ..., and goes for 177 steps before a terms is repeated (at the 178-th step). So a(3) = 177. See A291075 for the full trajectory.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..50
- Shigeru Watanabe, Periodicity of Post's normal process of tag, in Jerome Fox, ed., Proceedings of Symposium on Mathematical Theory of Automata, New York, April 1962, Polytechnic Press, Polytechnic Institute of Brooklyn, 1963, pp. 83-99. [Annotated scanned copy]
- N. J. A. Sloane, Maple programs that compute first 7 terms for each of A284116, A291067, A291068, A291069
Crossrefs
Programs
-
Maple
See link.
Extensions
a(8)-(42) from Lars Blomberg, Sep 16 2017
Comments