cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A291069 Largest number of distinct words arising in Watanabe's tag system {00, 0111} applied to a binary word w, over all starting words w of length n.

Original entry on oeis.org

5, 4, 4, 14, 13, 12, 25, 24, 23, 38, 37, 36, 53, 52, 51, 68, 67, 66, 85, 84, 83, 102, 101, 100, 119, 118, 117, 138, 137, 136, 157, 156, 155, 176, 175, 174, 195, 194, 193, 214, 213, 212, 235, 234, 233, 256, 255, 254, 277, 276
Offset: 1

Views

Author

N. J. A. Sloane, Aug 18 2017

Keywords

Comments

Watanabe's tag system {00, 0111} maps a word w over {0,1} to w', where if w begins with 0, w' is obtained by appending 00 to w and deleting the first three letters, or if w begins with 1, w' is obtained by appending 0111 to w and deleting the first three letters.
The empty word is included in the count.
Comment from Don Reble, Aug 25 2017: (Start)
The following comment applies to both the 3-shift tag systems {00,1110} (A291068) and {00,0111} (A291069). Number the bits in a binary word w starting at the left with bit 0. For the trajectory of w under the tag system, only bits numbered 0,3,6,9,... are important, the others (the unimportant bits) having no effect on the outcome.
An important 1 bit produces 0111 or 1110, and exactly one of those new 1 bits is important. The number of important 1's never changes. So the number of initial words of length n that terminate (the analog of A289670) is just 2^(number-of-unimportant-bits) = 2^(floor(2*n/3)) = A291778.
The number that end in a cycle is 2^n - 2^(floor(2*n/3)) = A291779.
Furthermore, the number of important zeros is eventually bounded.
Proof. If a word has A important zeros and B important ones, then after A+B steps, there will be at most 2A+4B bits, and at most (2A+4B+2)/3 important bits. B of them are important ones, so at most (2A+B+2)/3 are important zeros.
If A >= B+3, then (2A+B+2)/3 <= (2A+A-1)/3 < A. If A < B+3, then (2A+B+2)/3 < (3B+8)/3 = B+2. The first kind must shrink; the second kind can't grow past A+B+2. QED
Ultimately, a word with B important ones has at most A+B+2 important bits, so can't diverge. So the word "finite" in the definition was unnecessary and has been omitted. (End)

Examples

			Examples of strings that achieve these records: "1", "10", "000", "1001", "10010", "100100", "1001001".
		

Crossrefs

For the 3-shift tag systems {00,1101}, {00, 1011}, {00, 1110}, {00, 0111} see A284116, A291067, A291068, A291069 respectively (as well as the cross-referenced entries mentioned there).
Cf. A291074.

Programs

  • Maple
    See link.

Extensions

a(8)-(50) from Lars Blomberg, Sep 16 2017